This book is a detailed, carefully written introduction to the theory of

convex polytopes with particular emphasis on combinatorial aspects.

The text is largely self-contained, assuming only a knowledge of
standard linear algebra and elementary point set topology in RY.
Nevertheless, it takes the reader to important recent achievements.
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Preface

The aim of this book 1s to introduce the reader to the fascinating world of
convex polytopes.

The highlights of the book are three main theorems in t.he combi_natorial
theory of convex polytopes, known as the Dehn-Sommerville Relations, the

Upper Bound Theorem and the Lower Bound Theorem. Al] the background
information on convex sets and convex polytopes which is ngeded to undelj-
stand and appreciate these three theorems ig developed in detail. This
background material also forms a basis for studying other aspects of polytope
theory.

The Dehn-Sommerville Relations are classical, whereas the proofs of
the Upper Bound Theorem and the Lower Bound Theorem are of more
recent date: they were found 1n the early 1970’s by P. McMullen and D.
Barnette, respectively. A famous conjecture of P. McMullen on the charac-
terization of f-vectors of simplicial or simple polytppes Qates from the same
period ; the book ends with a brief discussion of this conjecture and some of
its relations to the Dehn-Sommerville Relations, the Upper Bound Theorel;n
and the Lower Bound Theorem. However, the recent proofs that McMullen’s
conditions are both sufficient (L. J. Billeraand C. W. Lee, 1980) and necessary
(R. P. Stanley, 1980) go beyond the scope of the book. |

Prerequisites for reading the book are modest: standard linear algebra and
elementary point set topology in R will suffice. |

The author is grateful to the many people who have. contributed to the
book: several colleagues, in particular Victor Klee and Erik Sparl"e A.mdersen,
supplied valuable information; Aage Bondesen suggested essential Improve-
ments; students at the University of Copenhagen algo syggested Improve-
ments; and Ulla Jacobsen performed an excellent typing job.

Copenhagen ARNE BR@NDSTED
February 1982
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Introduction

Convex polytopes are the d-dimensional analogues of 2-dimensional convex
polygons and 3-dimensional convex polyhedra. The theme of this book is
the combinatorial theory of convex polytopes. Generally speaking, the com-
binatorial theory deals with the numbers of faces of various dimensions
(vertices, edges, etc.). An example is the famous theorem of Euler, which states
that for a 3-dimensional convex polytope, the number f, of vertices, the
number f, of edges and the number f, of facets are connected by the relation

Jo—fi1i+/f.=2

(In contrast to the combinatorial theory, there is a metric theory, dealing
with such notions as length, angles and volume. For example, the concept
of a regular polytope belongs to the metric theory.)

The main text 1s divided into three chapters, followed by three appendices.
The appendices supply the necessary background information on lattices,
graphs and combinatorial identities. Following the appendices, and preceding
the bibliography, there 1s a section with bibliographical comments. Each of
Sections 1-15 ends with a selection of exercises.

Chapter 1 (Sections 1-6), entitled “Convex Sets,” contains those parts of
the general theory of d-dimensional convex sets that are needed in what
follows. Among the basic notions are the convex hull, the relative interior
of a convex set, supporting hyperplanes, faces of closed convex sets and
polarity. (Among the basic notions of convexity theory not touched upon
we mention convex cones and convex functions.)

The heading of Chapter 2 (Sections 7-15) is “Convex Polytopes.” In
Sections 7-11 we apply the general theory of convex sets developed in
Chapter 1 to the particular case of convex polytopes. (It is the author’s
behef that many properties of convex polytopes are only appreciated
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when seen on the background of properties of convex sets in general.) In
Sections 12-14 the important classes of simple, simplicial, cyclic and neigh-

bourly polytopes are introduced. In Section 15 we study the graph determined
by the vertices and edges of a polytope.

Chapter 3 contains selected topics in the “Combinatorial Theory of
Convex Polytopes.” We begin, in Section 16, with Euler’s Relation in its
d-dimensional version. In Section 17 we discuss the so-called Dehn-
Sommerville Relations which are “Euler-type” relations, valid for simple
or simplicial polytopes only. Sections 18 and 19 are devoted to the celebrated
Upper Bound Theorem and Lower Bound Theorem, respectively; these
theorems solve important extremum problems involving the numbers of
faces (of various dimensions) of simple or simplicial polytopes. Finally,
in Section 20 we report on a recent fundamental theorem which gives
“complete information” on the numbers of faces (of various dimensions)
of a simple or simplicial polytope.

The following flow chart outlines the organization of the book. However,
there are short cuts to the three main theorems of Chapter 3. To read the
proof of the Dehn-Sommerville Relations (Theorem 17.1) only Sections
1-12 and Euler’s Relation (Theorem 16.1) are needed; Euler’s Relation
also requires Theorem 15.1. To read the proof of the Upper Bound Theorem
(Theorem 18.1) only Sections 1-14 and Theorems 15.1-15.3 are needed.
To read the Lower Bound Theorem (Theorem 19.1) only Sections 1-12
and 15, and hence also Appendix 2, are needed. It is worth emphasizing that
none of the three short cuts requires the somewhat technical Appendix 3.
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CHAPTER 1
Convex Sets

§1. The Affine Structure of R?

The theory of convex polytopes, and more generally the theory of convex
sets, belongs to the subject of affine geometry. In a sense, the right framework
for studying convex sets is the notion of a Euclidean space, 1.e. a finite-
dimensional real affine space whose underlying linear space 1s equipped
with an mner product. However, there is no essential loss of generality in
working only with the more concrete spaces R?; therefore, everything will
take place in R%. We will assume that the reader is familiar with the standard
linear theory of R?, including such notions as subspaces, linear independence,
dimension, and linear mappings. We also assume familiarity with the stan-
dard inner product <-, -> of R?, including the induced norm I-1l, and elemen-
tary topological notions such as the interior int M, the closure cl M, and
the boundary bd M of a subset M of R¢.

The main purpose of this section is to give a brief survey of the affine
structure of R%. We give no proofs here; the reader is invited to produce
his own proofs, essentially by reducing the statements in the affine theory to

statements in the linear theory. It is important that the reader feels at home
in the affine structure of R,

For de N, we denote by R’ the set of all d-tuples x = (ay, ..., o) of
real numbers ay, ..., o;. We identify R with R, and we define R° := {0}

We recall some basic facts about the linear structure of Re. Equipped
with the standard linear operations, R? is a linear space. When the linear

structure of R? is in the foreground, the elements of R are called vectors.
The zero vector is denoted by o.
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A linear subspace is a non-empty subset L of R? such that
(a) Ayxy + Ay x,isin L forall x,,x,e Land all A, 1, € R.

A linear combination of vectors x,, ..., x, from R? is a vector of the form
Aixy + -+ A,x,, where 4,,..., 4, are in R. Corresponding to n =0,
we allow the empty linear combination with the value o. (In the definition
of a linear combination there 1s a certain ambiguity. In some situations
when talking about a linear combination A;x, + --- + A,x, we not only
think of the vector x = A;x, + --- + 4,x,, but also of the particular co-
efficients A,,..., 4, used to represent x.) The condition (a) expresses that
any linear combination of two vectors from L is again in L. Actually, (a)
1s equivalent to the following:

(b) Any linear combination of vectors from L is again in L.

(Strictly speaking, (a) and (b) are only equivalent when L # J. For L = &,
condition (a) holds, whereas (b) is violated by the fact that we allow the
empty linear combination. Note, however, that we did require L # ¢J In
the definition of a linear subspace.)

The intersection of any family of linear subspaces of R? is again a linear
subspace of R?. Therefore, for any subset M of R? there is a smallest linear
subspace containing M, namely, the intersection of all linear subspaces
containing M. This subspace is called the linear subspace spanned by M,
or the linear hull of M, and is denoted by span M.

One has the following description of the linear hull of a subset M:

(c) For any subset M of R®, the linear hull span M is the set of all linear
combinations of vectors from M.

(Note that our convention concerning the empty linear combination
ensures that the correct statement span (J = {0} is included 1n (c).)

Ann-family (x4, ..., x,) of vectors from R?is said to be linearly independent
if a linear combination 4,x, + --- + 4, x, can only have the value o0 when
A, =---= A, = 0. (Note that the empty family, corresponding to n = 0,
is linearly independent.) Linear independence i1s equivalent to saying that
none of the vectors is a linear combination of the remaining ones. When a
vector x 1s a linear combination of x,,..., x,, say x = A;x; + - + 4,X,,
then the coefficients 4,,..., 4, are uniquely determined if and only if
(X, ..., Xx,) 1s linearly independent. An n-family (x,, ..., x,) which is not
linearly independent is said to be linearly dependent.

A linear basis of a linear subspace L of R? is a linearly independent n-
family (x4, ..., x,) of vectors from L such that L = span{x,,..., x,}. The
dimension dim L of L is the largest non-negative integer » such that some
n-family of vectors from L is linearly independent. A linearly independent
n-family of vectors from L is a basis of L if and only if n = dim L.

Let M be any subset of R?, and let n be the dimension of span M. Then
there 1s actually a linearly independent n-family (x,,..., x,) of vectors
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from M, i.e. there is a basis (x,, ..., x,) of span M consisting of vectors from
M. We therefore have:

(d) For any subset M of R there exists a linearly independent family

(X4, --.,X,) of vectors from M such that span M is the set of all linear
combinations

Ai X;
=1

l

Of X1,...,X,.

This statement 1s a sharpening of (c). It shows that to generate span M we
need only take all linear combinations of the fixed vectors x4, ..., x, from
M. Furthermore, each vector in span M has a unique representation as a
linear combination of x,, ..., x,.

A mapping ¢ from some linear subspace L of R? into R® is called a linear
mapping if 1t preserves linear combinations, i.e.

@(_zzl;lixi) = _;llifﬂ(xi)-

Whep ¢ 1s linear, then ¢(L) is a linear subspace of R®. Linear mappings are
continuous.

A one-to-one linear mapping from a linear subspace L; of R onto a
linear subspace L, of R® is called a (linear) isomorphism. If there exists an
isomorphism from L, onto L,, then L, and L, are said to be isomorphic.
Two linear subspaces are isomorphic if and only if they have the same

dimension. An 1somorphism is also a homeomorphism, i.e. it preserves the
topological structure.

We next move on to a discussion of the affine structure of R%. An affine
:subspace of R is either the empty set @ or a translate of a linear subspace,
i.e. a subset A = x + L where x € R? and L is a linear subspace of R¢. (Note
that L 1s unique whereas x can be chosen arbitrarily in 4.) By an affine
space we mean an affine subspace of some RY. When A, and A4, are affine
subspaces of R? with 4; = A,, we shall also call 4, an affine subspace of
A,. The elements x = («y, ..., ;) of some affine subspace 4 of R? will be
called points when the affine structure, rather than the linear structure, is in

the ‘foyegrqund. (However, 1t will not always be possible, nor desirable,
to distinguish between points and vectors.)

A subset A of R? is an affine subspace if and only if the following holds:
@) Ayxy; + Ay x,isinA forall x;,,x,e Aand all A;, A, e Rwith A, + A, = 1.
For any two distinct points x, and x, in RY, the set

{Alxl + AzXzI)»l, AzeR, A’l + /12 = 1}

e e L st el o G S
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is called the line through x, and x,. The condition (a’) then states that the
line through any two points of A4 is contained in 4.

An affine combination of points x4, ..., x, from R4 is a linear combination
Ayx; + -+ A,x,, where A, +--- + 4, = 1. We shall write

Za A X;
i=1

to indicate that the linear combination A;x; + --- + 4,X, is In fact an
affine combination. (The empty linear combination is not an affine combina-
tion. Therefore, in an affine combination A,x, + --- + 4,x, we always have
n > 1.) The condition (a’) states that any affine combination of two points
from A is again in A. Actually, (a’) is equivalent to the following:

(b') Any affine combination of points from A is again in A.

The intersection of any family of affine subspaces of R* is again an affine
subspace of R¢. (Here it is important to note that ¢J is an affine subspace.)
Therefore, for any subset M of R? there is a smallest affine subspace containing
M, namely, the intersection of all affine subspaces containing M. This
affine subspace is called the affine subspace spanned by M, or the affine hull
of M, and it is denoted by aft M.

One has the following description of the affine hull of a subset M:

(c') For any subset M of RY the affine hull aff M is the set of all affine
combinations of points from M.

An n-family (x4, .. ., x,) of points from R is said to be affinely independent
if a linear combination 1,x; + -+ + 4,x, with 4, + --- + 4, = 0 can only
have the value 0 when 4, = --- = A, = 0. (In particular, the empty family,
corresponding to n = 0, is affinely independent.) Affine independence 1s
equivalent to saying that none of the points is an affine combination of the
remaining points. When a point x is an affine combination of x, ..., X,,
say x = A;x; + - + A,x,, then the coefficients 4,,..., 4, are uniquely
determined if and only if (x4, ..., X,) is affinely independent. An n-family
(x4, . .., X,) which is not affinely independent is said to be affinely dependent.

Affine independence of an n-family (x, ..., X,) is equivalent to linear
independence of one/all of the (n — 1)-families

(xl _xi,...,xi_l —-xi,le —xi,...,xn—xi), l= 1,...,".

An affine basis of an affine space A is an affinely independent n-family
(X4, ..., X,) of points from A4 such that 4 = aff{x,, ..., x,}. The dimension
dim A of a non-empty affine space A is the dimension of the linear subspace L

such that 4 = x + L. (Since L is unique, dim 4 is well defined. When 4 1s a
linear subspace, then the affine dimension and the linear dimension are the
same by definition, and therefore we may use the same notation.) When
A = &, we put dim A = — 1. The dimension of A4 is then n — 1 if and only
if nis the largest non-negative integer such that there is an affinely independent
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n-family of points from 4. An affinely independent n-family of points from

A 1s an affine basis of 4 if and only ifn = dim 4 + 1.

Let M be any subset of R?, and let the dimension of af M be n — 1.
Then there is actually an affinely independent n-family (x,, .
points from M, i.e. there is an affine basis (x,, .
points from M. We therefore have:

(d’) For any subset M of R® there exists an affinely independent family

(X1, ..., %,) of points from M such that aff M is the set of all affine
combinations

n

Zalixi

i=1
Of Xqyouuy X,

This statement is a sharpening of (c¢'). It shows that to generate aff M it
suflices to take all affine combinations of the fixed points Xq, ..., X, from M.

Furthermore, each point in aff M has a unique representation as an affine
combination of x,, ..., x,.

The 0-dimensional affine spaces are the 1-point sets. The 1-dimensional
affine spaces are called lines. When x; and x, are two distinct points of R,
then the 2-family (x,, x,) is affinely independent. Therefore, aff {X1, X5}
1s 1-dimensional, i.e. a line, and it is in fact the line through x; and x, in
the sense used earlier in this section. Conversely, the line through two points
x; and x, in the earlier sense is in fact a 1-dimensional affine space, 1.e. a
line.

An (n — 1)-dimensional affine subspace of an n-dimensional affine
space 4, where n > 1, is called a hyperplane in A. If A is an affine subspace
of R?, then the hyperplanes in 4 are the sets H ~ 4 where H is a hyperplane
in R such that H N A is a non-empty proper subset of A.

A mapping ¢ from an affine subspace 4 of R? into R is called an affine
mapping 1f 1t preserves affine combinations, i.e.

(0( Za ’lixi) = Za 4; (x;).
i=1 i=1

When ¢ is affine, then ¢(A) is an affine subspace of R°. When 4 = x + L,
where L is a linear subspace of R?, then a mapping ¢: 4 — R¢ is affine if and
only if there exists a linear mapping ®: L — R® and a point y € R® such that
P(x + z) = y + ®(2) for all ze L. Affine mappings are continuous.

An affine mapping ¢: A - R is called an affine function on A. For each
hyperplane H in A there is a (non-constant) affine function ¢ on A such that
H = ¢~ '(0). Conversely, ¢~ 1(0) is a hyperplane in A for each non-constant
affine function ¢ on 4. We have ¢~ (0) = ¢~ 1(0) for two affine functions
@ and ¥ on A if and only if ¢ = Ay for some non-zero real .

When ¢ is a non-constant affine function on an affine space 4, we shall

call the sets ¢~ *(]— 00, 0[) and ¢~ 1(J0, + oo[) the open halfspaces bounded

..y X,) oOf
.., x,) of aff M consisting of

—— i — o ———— i re—— —

- ———

.......
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by the hyperplane H = ¢~ '(0), and we shall call the sets cp'"_ll(]—oo, 01)
and ¢~ ([0, + oo[) the closed halfspaces bounded by H = ¢~ (0). Open
halfspaces are non-empty open sets, closed halfspaces are non-empty closed
sets. If H = ¢~ !(0) is a hyperplane in A, then two points from 4 \ H are

said to be on the same side of H if they both belong to ¢~ '(] — o0, 0) or both
belong to ¢~ *(J0, + oo[); if each of the two open halfspaces contains one

of the two points, we shall say that they are on opposite sides of H.

A halfline 1s a halfspace 1n a line. o
Let A be an affine subspace of R?, and let K be a closed halfspace in R

such that 4 N K 1s a non-empty proper subset of 4. Then 4 N K s a closed
halfspace in A. Conversely, each closed halfspace in A4 arises this way.

The same applies to open halfspaces.
For ye R? and « € R we let

H(y, a) == {x e R!|{x, y) = a}.

Note that H(o,a) = R when o = 0, and H(o,a) = @_ when a # 0. The
fact that the affine functions on R are precisely the functions

x—{x, y> — a, yeRY aeR,

implies that the hyperplanes in R? are precisely the sets H(y, ) for y # o.
If y # o, then y is called a normal of H(y, a).
For ye R? and o € R we let

K(y, @) = {x & R*|<x, y) < a}.

Note that K(o,®) = R? when o > 0, and K(o,a) = & when a < 0. For
y # o, the set K(y, o) is one of the two closed halfspaces in R“ bounded by
H(y, ). The other closed halfspace bounded by H(y,o) 1s K(—y, —a).
Note that

bd K(y, @) = H(y, o),
int K(y, o) = K(y, «) \ H(y, o),
cl(int K(y, o)) = K(y, o),

when y # o.
A one-to-one affine mapping from an affine space 4, onto an affine

space A, is called an (affine) isomorphism. If there exists an isomorphism
from A, onto 4,, then 4, and A4, are said to be (affinely) isomorphic. Two

- affine spaces are isomorphic if and only if they have the same dimension.

An isomorphism is also a homeomorphism, i.e. it preserves the topological

structure. | | |
From what has been said above, it follows that any d-dimensional affine

space A4 is affinely isomorphic to the particular d-dimensional gfﬁne space
R4 In other words, A may be “identified” with R, not only in an affine

sense but also in a topological sense. Note also that any given point of A
can be “identified ” with any given point of R®.
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Finally, we should like to point out that this section does not include all
the necessary information about the linear and affine structure of R? needed

in what follows. Some important additional information is contained in
Exercises 1.1-1.5.

EXERCISES
1.1. Let (x4, ..., x,) be an n-family of points from R?, where
X; = (0lgiyen.y 0y i=1,...,n.
Let
X; == (1, aty;, ..., 0y), i=1,...,n.

Show that the n-family (x, .. ., x,) is affinely independent if and only if the n-family
(X1, .-, X,) of vectors from R**! is linearly independent.

1.2. For any subset M of R?, show that

dim(aff M) = dim(span M)
when o € aff M, and

" dim(aff M) = dim(span M) — 1
when o ¢ aff M.

1.3. Let A be an affine subspace of R“, and let H be a hyperplane in R?. Show that
dim(A " H) =dim A — 1
when AN H # Jand A & H.

14. Let A; = x; + L, and A, = x, + L, be non-empty affine subspaces of R¢. Then
A, and A, are said to be parallelif L, < L, or L, = L,, complementary if L, and

L, are complementary (and orthogonal if L, and L, are orthogonal).

Show that if A, and A4, are parallel and 4, N A, % &, then A, < A, or
A, < A,.

Show that if 4, and A, are complementary, then 4; n A4, is a 1-point set.

1.5. LetA, = x; + L,and A, = x, + L, be complementary affine subspaces of R?, and
let x, be the unique common point of 4; and A4,, cf. Exercise 1.4. Then A, =
xo + Lyand A, = xy + L,. Let I1: R - L, denote the projection in the direction
of L,. For any x € R?, let n(x) := x, + II(x — x,). Show that n(x) 1s the unique
common point of 4; and (x — x,) + A4,. (The mapping = is called the projection

onto A, 1n the direction of 4,. When A, and A4, are also orthogonal, then = is called
the orthogonal projection onto A,.)

1.6. An n-family (x,, ..., x,) of points from R? is said to be in general position if every
subfamily (:xil., ..., %) With p<d+ 1 is affinely independent. Verify that
(X, ..., X,) 18 in general position if and only if for each k with0 < k < d — 1 and

for each k-dimensional affine subspace A of R?, the number of i’s such that x, e 4
1s at most k + 1.

1.7. Let x,, ..., x, be distinct points in R’. Show that there is w % o such that for each
o € R, the hyperplane H(w, ) contains at most one of the points x,, ..., x

n'
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§2. Convex Sets

In this section we shall introduce the notion of a convex set and we shall

prove some basic facts about such sets. In Section 1 we demonstrated a
strong analogy between linear concepts and affine concepts. This analogy
carries over to convex concepts, though not in a complete fashion.

A subset C of RY is called a convex set if A,x, + A, x, belongs to C for all
x, x,€Candall A, ,,e Rwith 4, + 4, = 1 and Ay, Ay = 0.
When x, and x, are distinct points from R¢ then the set

[x1, X2] = {A1x; + Ay X, Ay, Ay 20, Ay + 4, = 1
= {(1 — A)x; + Ax,|4€[0, 1]}

is called the closed segment between x; and x,. Half-open segments ]:xl, xZJ,
[x,,Xx,[ and open segments ]x,, x,[ are defined analogously. With this
notation, a set C is convex if and only if the closed segment between any two

points of C is contained in C.
The affine subspaces of R?, including R and (¥, are convex. Any (closed

or open) halfspace 1s convex. |
The image of a convex set under an affine mapping 1s gain convex. In

particular, translates of convex sets are again convex.
. . . d »
By a convex combination of points x,, ..., x, from R® we mean a linear

combination A;x, + --- + 4,x,, where 4; + --- + lf, =1land 4,..., 4, =
0. Every convex combination is also an affine combination. We shall write

to indicate that the linear combination A,x; + --- + 4,X, 1s 1n fact a convex
combination. The definition of a convex set expresses that any convex
combination of two points from the set is again in the set. We actually have:

Theorem 2.1. A subset C of R? is convex if and only if any convex combination
of points from C is again in C.

ProOE. If any convex combination of points from C is again in C, then, in
particular, any convex combination of two points from C 1s in C. Therefore,

C 1s convex. | |
Conversely, assume that C is convex. We shall prove by induction on n

that any point from R which is a convex combination of n points from C
is again in C. For n = 1 this is trivial, and for n = 2 it follows by definition.
So, let n be at least 3, assume that any convex combination of fewer than n

points from C 1s in C, and let



be a convex combination of n points X1,

in particular, 1 — A; > 0. Therefore, we may write

X = ZC /lix,-

[
ju
by
+

Ing
R
Ral

Here

1s 1n fact a convex combination since A+ -+, =1-1, and so y

1s in C by hypothesis. By the convexity of C then A,x, + (1 — A,)y is also
in C, 1.e. xis in C. ]

It 1s clear that the intersection of any family of convex sets in R? is again
convex. Therefore, for any subset M of R? there is a smallest convex set
containing M, namely, the intersection of all convex sets in R¢ containing M.

This convex set is called the convex set spanned by M, or the convex hull of
M, and it is denoted by conv M.

It 1s clear that conv(x + M) = x + conv M for any point x and any set

M. More generally, it follows from Theorem 2.2 below that conv(p(M)) =
¢(conv M) when ¢ is an affine mapping.

We have the following description of the convex hull of a set -

Theorem 2.2. For any subset M of R%, the convex hull conv M is the set of
all convex combinations of points from M.

PROOF. Let C denote the set of all convex combinations of points from M.
Since M < conv M, each x € C is also a convex combination of points from
the convex set conv M; the “only if part of Theorem 2.1 then shows that
C < conv M. To prove the opposite inclusion, it suffices to show that C
Is a convex set containing M. Since each x € M has the trivial representation
X = lx as a convex combination of points from M , 1t follows that M < C.
To see that 4;x, + 4,x, is in C for each X1, X, €C and each A;,1, > 0

with 4; + 4, = 1, note that by definition x; and x, are convex combinations
of points from M, say

Xy = ZC Hi)i.

i=n+1

X1 =:;Z;;%}ks

ny ...y X, from C. If A; = O for some i,
then x is in fact a convex combination of fewer than n points from C, and so x

belongs to C by hypothesis. If A, # 0 for all i, then A; < 1 for all i, whence,
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But then
Aixy + Ayx, = ‘illluiyi + Eirllzﬂiyn
and
Ay = 0, A pi = 0, __il)q#i + ‘_iﬂlz u = 1.
This shows that A;x; + A4, x, 1sa convex combination of the points y,, ..., y,,
from M, whence A;x, + 4, x, is in C, as desired. []

Up to now we have had complete analogy with Section 1. The concept
of a basis of a linear or atfine subspace, however, has no analogue for convex
sets in general. Still, we have the following substitute:

Theorem 2.3. For any subset M of R%, the convex hull conv M is the set of
all convex combinations

such that (x4, . .., X,) is an affinely independent family of points from M.

In other words, in order to generate conv M we need not take all convex
combinations of points from M as described by Theorem 2.2; it suffices to
take those formed by the affinely independent families of points from M.
On the other hand, no fixed family of points from M will suffice, as in the case

of span M or aff M, cf. (d) and (d’) of Section 1.

Proor. We shall prove that if a point x is a convex combination of n points
Xy, -..5 X, Such that (x,, ..., x,) is affinely dependent, then x is already a
convex combination of n — 1 of the points x,, ..., x,. Repeating this argu-
ment, 1f necessary, it follows that there is an affinely independent subfamily
(X5 -5 X;,) of (xq,...,x,) such that x is a convex combination of
Xi,s - -+ » X; . The statement then follows from Theorem 2.2.

So, suppose that we have

n

X = Zc Aixi,

i=1

(1)

where (x4, ..., x,) 1s affinely dependent. If some 4, is 0, then x is already a
convex combination of n — 1 of the points x,,..., x,. Hence, we may
assume that all 4; are > 0. The affine dependence means that there are reals

Ui, ..., 4, not all 0, such that

n n

Z HiXi = 0O, (2)



14 . LONIVEX DCLS

Combining (1) and (2) we see that for any real t we have

X = Zn:()vi — tU)X; 3)
i=1

and
Z (A — tw) = 1.
i=1

We now simply seek a value of ¢ (in fact, a positive value) such that A; — tu; =
0 for all i, and A, — tu; = O for at least one i; then (3) will be a representation
of x as a convex combination of n — 1 of the points x;, ..., x,. We have
A — tu; > 0 for any ¢t > 0 when y; < 0. When y; > 0, we have 4; — ty; = 0

provided that t < A,/y;, with A; — ty; = 0 if and only if ¢ = 4;/u;. Noting
that we must have u, > O for at least one i, we see that

t == min{A;/p;|u; > 0}
fulfils the requirements. []

The following two corollaries are both known as Carathéodory’s Theorem:

Corollary 2.4. For any subset M of R? with dim(aff M) = n, the convex hull
conv M is the set of all convex combinations of at most n + 1 points from M.

Proor. For any affinely independent m-family (x4, . .., x,,) of points from M,
we have m < n + 1 by the assumption. Therefore, the set of all convex
combinations of n + 1 or fewer points from M contains conv M by Theorem
2.3. On the other hand, it is contained in conv M by Theorem 2.2. []

Corollary 2.5. For any subset M of R? with dim(aff M) = n, the convex hull
conv M is the set of all convex combinations of precisely n + 1 points from M.

ProoF. In a convex combination one may always add terms of the form Ox.
Therefore, the statement follows from Corollary 2.4. []

By a convex polytope, or simply a polytope, we mean a set which 1s the
convex hull of a non-empty finite set {x,, ..., x,}. If P 1s a polytope, then any
translate x + P of P is also a polytope; this follows from the fact that x +
conv M = conv(x + M). More generally, the image of a polytope under an
affine mapping is again a polytope; this follows from the fact that
o(conv M) = conv ¢(M) when ¢ 1s an afline mapping.

A polytope S with the property that there exists an affinely independent
family (x4, ..., x,) such that § = conv{x,,..., x,} 1s called a simplex (and
the points x,, ..., X, are called the vertices of S; cf. the remarks following
Theorem 7.1).

One might say that simplices have a “convex basis,” cf. the remark

preceding Theorem 2.3. In fact, if x4, . .., x, are the vertices of a simplex S,
then by the affine independence each point in aff{x,, ..., x,} has a unique

—_ — g T ——
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representation as an affine combination of x,, .
each point in conv{x,,..., x,} has a unique representation as a convex
combinationof x,, ..., x,, cf. Theorem 2.3.

Convex sets having a “convex basis” in the sense described above must,

of course, be polytopes. The following theorem shows that simplices are the
only polytopes having a “convex basis™:

.., X,, whence, 1n particular,

Theorem 2.6. Let M = {x4,..., x,} be a finite set of n points from R® such

that the n-family (xy, ..., Xx,) is affinely dependent. Then there are subsets
M,and M, of MwithM; "M, = Jand M, v M, = M such that

conv M, nconv M, # .

Proor. By the affine dependence there arereals 4, ..., 4,, not all O, such that

Z A = 0. (4)

Denoting the set {1, ..., n} by I, we let

[,:={iel|A; > 0}, I,:={iel|A <0},

and we let
M, = {x;|liel}, M, := {x;liel,}.
Now, take
A
X i= Z —ixi, (5)
i€I1 A’
where

A= Y A

iEIl

(It is clear that I, # ¢J, whence A > 0.) The right-hand side of (5) 1s in fact a
convex combination, whence x is in conv M, by Theorem 2.2. However,
using (4) we see that we also have

X = ) = i

iel;

and again we actually have a convex combination. Therefore, x 1s also 1n
conv M, . Consequently, conv M, and conv M, have the point x in common.

[]

The following corollary of Theorem 2.6 is known as Radon’s T heorem:

Corollary 2.7. Let M = {x,, ..., x,} be a finite set of n points from R? such
thatn > d + 2. Then there are subsets M, and M, of MwithM, "M, = J
and M, U M, = M such that

convM, nconv M, # .
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PrROOF. The maximum number of members in an affinely independent

family of points from R? is d + 1. Therefore, (x,, ..., x,) must be affinely
dependent, whence Theorem 2.6 applies. []

We conclude this section with an important application of Carathéodory’s
Theorem. |

Theorem 2.8. For any compact subset M of RY, the convex hull conv M is
again compact.

PROOF. Let (y,),.n be any sequence of points from conv M. We shall prove
that the sequence admits a subsequence which converges to a point in conv M.

Let the dimension of aff M be denoted by n. Then Corollary 2.5 shows that
each y, in the sequence has a representation

n+1

yv = ZC A’vixvia

i=1

where x,; € M. We now consider the n + 1 sequences

(xvl)vsl\ls R (xv(n+1))veN (6)
of points from M, and then + 1 sequences
(Avl)veNa"'&(/lv(n-f-l))vel\l (7)

of real numbers from [0, 1]. By the compactness of M there is a subsequence of
(Xy1)ven Which converges to a point in M. Replace all 2(n + 1) sequences
by the corresponding subsequences. Change notation such that (6) and (7)
now denote the subsequences; then (x,,),.n converges in M. Next, use the
compactness of M again to see that there is a subsequence of the (sub)sequence
(X,2)ven Which converges to a point in M. Change notation, etc. Then after
2(n + 1) steps, where we use the compactness of M in step 1,...,n + 1,

and the compactness of [0, 1] in step n + 2,...,2n + 2, we end up with
subsequences

(xvml)meNa e (xvm(n+ 1))meN

of the original sequences (6) which converge in M, say

IIm Xvmi — X0is

m— o0

i=1,...,n + 1,
and subsequences

(lvml)mel\l: Teey (Avm(n+ 1))meN

of the original sequences (7) which converge in [0, 1], say

liIl’l lvmi —_ A’Of’

m-= o0

i=1,...,n+ 1.

Since
n+1

Z Avml‘ - 1,

i=1

me N,

------

I §2. Convex Sets L7

we also have
z A’Oi —_— 1.
i=1

Then the linear combination
n+1

Yo = Z AoiXoi
i=1

is in fact a convex combination. Therefore, y, 1s in conv M by Theorem 2.2.

It 1s also clear that
’ llm yvm = yo.

m-—" oo
In conclusion, (y, ).n 1S @ subsequence of (), n Which converges to a point
in conv M. ]

Some readers may prefer the following version of the proof above. With
n = dim(aff M) as above, let

S='-_—' {(11,...,AH+I)ERn+1|ll, .
and define a mapping ¢: M"*! x S — R? by

* 9 xn+ 1)9 (;{‘15 ..

..,1"4_1 20,11 +"'+Aﬂn+1 =1}a

n+1

s A1) = z AiX;.

1= 1
By Corollary 2.5, the set (M"*! x 8) is precisely conv M. Now, M"*! x §
is compact by the compactness of M and S, and ¢ 1s continuous. Since the
continuous image of a compact set is again compact, it follows that conv M

1S compact.
Since any finite set is compact, Theorem 2.8 immediately implies:

(p((xlﬁ * v

Corollary 2.9. Any convex polytope P in R* is a compact set.

One should observe, however, that a direct proof of Corollary 2.9 does not
require Carathéodory’s Theorem. In fact, if M is the finite set {x,, ..., x,},
then each y, (in the notation of the proof above) has a representation

yv -~ ZC A’vixi .
i=1
Then we have a similar situation as in the proof above (with m corresponding
ton + 1), except that now the sequences corresponding to the sequences (6)
are constant, x,; = x; for all v. Therefore, we need only show here that the

sequences (7) admit converging subsequences (which is proved as above).

EXERCISES

2.1. Show that when C, and C, are convex sets in R?, then the set
Cl +- Cz ¢ — {xl -+ X2!x1 € CI‘J x2 € Cz}

1s also convex.
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2.2.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.5.

2.10.

2.11.

1. Convex Sets

Show that when C is a convex set in R? and A is a real, then the set
AC = {Ax|x € C}

is also convex.

Show that when C is a convex set in R?, and ¢: R¢ — R¢is an affine mapping, then
o(C) 1s also convex.

Show that conv(M, + M,) = conv M, + conv M, for any subsets M; and M,
of R“.

Show that when M is any subset of R, and ¢: R? — R is an affine mapping, then
¢(conv M) = conv ¢(M). Deduce 1n particular that the affine image of a polytope
is again a polytope.

Show that when M is an open subset of R?, then conv M is also open. Use this fact
to show that the interior of a convex set is again convex. (Cf. Theorem 3.4(b).)

Show by an example in R? that the convex hull of a closed set need not be closed.
(Cf. Theorem 2.8.)

An n-family (x, ..., X,) of points from R? is said to be convexly independent if no
x; in the family is a convex combination of the remaining x;’s. Forn > d + 2,show
that if every (d + 2)-subfamily of (x, ..., x,) is convexly independent, then the
entire n-family is convexly independent.

Let (C,);.; be a family of convex sets in R? with d + 1 < card I. Consider the
following two statements:

(a) Anyd + 1 of the sets C; have a non-empty intersection.
(b) All the sets C; have a non-empty intersection.

Prove Helly's Theorem: If card I < oo, then (a) = (b). (Hint: Use induction
on n:= card I. Apply Corollary 2.7.)
Show by an example that we need not have (a) = (b) when card I = oo.

Prove that if each C, is closed, and at least one is compact, then we have
(a) = (b) without restriction on card I.

Let a point x in R? be a convex combination of points X, ..., X, and let each x;
be a convex combination of points y;q, - . ., Vin.- Show that x is a convex combina-
tion of the points y;, , i=1,...,n,v;=1,..., 1.

Let (C));., be a family of distinct convex sets in R?. Show that

conv | ) C,

iecl

is the set of all convex combinations

where x; € C; . |
Deduce in particular that when C,; and C, are convex, then conv(C, u C,) 18
the union of all segments [x,, x,] with x, € C, and x,; € C,.

Then (x4, -
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§3. The Relative Interior of a Convex Set

It is clear that the interior of a convex set may be empty. A triangle in R,
for example, has no interior points. However, it does have interior points 1n
the 2-dimensional affine space that it spans. This observation illustrates the
definition below of the relative interior of a convex set, and the main result of
this section, Theorem 3.1. We shall also discuss the behaviour of a convex
set under the operations of forming (relative) interior, closure, and boundary.

By the relative interior of a convex set C in R* we mean the interior of C
in the affine hull aff C of C. The relative interior of C 1s denoted by r1 C.
Points in ri C are called relative interior points of C. The set cl1C \ 11 C 18
called the relative boundary of C, and 1s denoted by rb C. Points 1n b C
are called relative boundary points of C. (Since aff C is a closed subset of
R4, the “relative closure” of C is simply the closure of C. Hence, the relative
boundary of C is actually the boundary of C 1n aft C.)

It should be noted that the ri-operation is not just a slight modification
of the int-operation. Most striking, perhaps, is the fact that the ri-operation
does not preserve inclusions. For example, let C, be a side of a triangle
C,.Then C, = C,, whereas r1 C, &« 11 C,; in fact, n C, and r1 C, are non-
empty disjoint sets.

By the dimension of a convex set C we mean the dimension dim(aff C)
of the affine hull of C; it is denoted by dim C. The empty set has dimension
— 1. The 0-dimensional convex sets are the 1-point sets {x}. The 1-dimen-

sional convex sets are the (closed, half-open or open) segments, the (closed
or open) halflines, and the lines.

For a 0O-dimensional convex set C = {x}, we clearly have nn C = C,
clC=C,and b C = .

We have ri C = int C for a non-empty convex set C in R? if and only if
int C # ¢J. In fact, if int C # & then aff C = R% whence ri C = int C by
the definition of r1 C. The converse is a consequence of the following:

Theorem 3.1. Let C be any non-empty convex set in R. Then 11 C # .

We first prove Theorem 3.1 for simplices:

Lemma 3.2. Let S be a simplex in R°. Thenri S # {J.

ProorF. When dim S = k, there 1s a (k + 1)-family (x,,

..., Xk4 1), affinely
independent, such that

S — COHV{xl, « v vy xk+1}.

.., X;+1) 18 an affine basis of aff S; hence, aff § 1s the set of points

of the form
k+1

x = Y*A;x;,
i=1
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and for each x e aff §, the coefficients 4,, .
we may define a mapping

.., A4+ 1 are unique. Therefore,

@:aff S » R**!
by letting

Py
T
il

k+ 1
(P( za A’ixi) = (Ag, ooy Agt 1)
i=1

This is actually an affine mapping; in particular, it 1s continuous. Let
Ki = {(A’la I A’k-l-l) S Rk+1 IA’I > 0}:

Then K, ..., K, ., are open halfspaces in R* ™! and therefore, by continuity,

i=1,...,k + 1.

the sets ¢ '(K,),..., ¢ '(K,;,) are open (in fact, open halfspaces) in
aff S. The set
k+1
N o™ '(K), (1)
i=1

1s therefore also open 1n aff S. Now, note that

k+ 1 k+1
ﬂ fP_l(Ki) = {Z: AiX;
i=1 i=

This shows 1n particular that the set (1) is non-empty. And since affine
combinations A;x; + -+ + A4 x4+ With all 4, > 0 are convex combina-
tions, we see that the set (1) 1s a subset of S. In other words, the set S contains a
non-empty set which 1s open 1n aff §, whence ri § # . (The proof shows

AlyovnsAygsy > 0}.

that the set (1) 1s a subset of r1 S. Actually, the two sets are the same.) []
With Lemma 3.2 at hand we can now pass to:
PRrROOF (Theorem 3.1). Let
k :=dim C (= dim(aff C)).
Then there is an affinely independent (k + 1)-family (x,,..., x34+4) of

points from C (but no such (k + 2)-family). Let

cy Xk+1)-

Then § 1s a simplex contained in C. By Lemma 3.2, S has a non-empty
interior relative to aff S. Since

S = ConV{xl, .
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aff S < aff C
and
9 dim(aff §) = k = dim(aff O),
" we actually have
aft § = aft C.

' ."w'*-[*:-."
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Therefore, S has a non-empty interior relative to aff C. But since S is a subset
of C, 1t follows that C has a non-empty interior relative to aff C, as desired.

The following theorem shows that any point in the closure of a convex set

C can be “seen” from any relative interior point of C “via” relative interior
points:

Iheorem 3.3. Let C be a convex set in R. Then for any x,eri C and any
x; € cl C with x, # x; we have [x,, x,[ < ri C.

PROOF. It is easy to prove the statement in the particular case where we have
xoemt C and x; € C. For A€7]0, 1, let x,:=(1 — Axo + Ax,. From
xo €1nt C 1t follows that there is a ball B centred at xo with B < C. From
x, € C and the convexity of C it next follows that

B,:=(1 - A)B + Ax,

1s contained in C. But B, is a ball centred at x 2> whence x; e int C, as desired.

The proof below covering the general case is an elaborate version of this
idea. Of course, the main difficulty is that x, need not be in C.

S0, consider x, €1i C and x, e cl C with x, # x,. For any A€ ]0, 1[, let
xl ‘= (1 - A)xo +- lxl.

We shall prove that x; eri C. Since x, is a relative interior point of C
there is a (relatively) open subset U of aff C such that xo€ U < C. Let

Vi=A"Yx; — (1 — AHU).

3

Since
Y AR ) =1,

it follows that V' is a subset of aff C, and it is, in fact, (relatively) open. And
since

X1 = l_l(xa — (1 = A)xy),

we see that x, € V. Therefore, by the assumption that x; €cl C, there is a
pointy, € VN C. Let

W:=(1 - )U + iy,.

Then W is a (relatively) open subset of aff C, and since we have both UcC
and y, € C, it follows that W < C by the convexity of C. We complete the

proof by showing that x, € W. From the definition of V it follows that there
1S a point y, € U such that

Vi = )-_l(xa — (1 = ADyo).
Then
x, =1 = ANy, + Ay,

e(l1 -NHU + Ay, = W,
as desired.
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Theorem 3.3 is a useful tool. Among other things, it is crucial for the proofs
of all the statements, except (), in the following theorem. The theorem
brings out the nice behaviour of convex sets.

Theorem 3.4. For any convex set C in R one has:

(a) cl C is convex.

(b) ri1 C is convex.

) clC=cl(cdC) = cl(r1 C).

(d) riC =ri(cl C) = ri(r1 C).

(e) tbC =1b(cl C) = rb(r1 C).

(f) aff C = aff(cl C) = afi(r1 C).

(g) dim C = dim(cl C) = dim(r1 C).

Proor. For C = ¢, there is nothing to prove. SO, we may assume that C

is non-empty, whenever necessary. |
(a) Let x,, x; €cl C, and let A€ ]0, 1{. We shall prove that the point

X, 3= (1 — i)xo 4+ lxl
is also in cl C. Now, there are sequences

(xOv)veN& (xlv)veN

of points from C such that

llm xh, — xl.

Vy— O

Iim x4, = Xgq,

V= O

By the convexity of C, the points

(1 — A)xo, + Axy,, ve N,

are all in C. Furthermore,

lim ((1 — ’l)x()v + /lxh.) = (1 — /l)xO + Axl = X.

vV~ QO

This shows that x, e cl C. |
(b) We shall prove that for any xo,x;€nC and any A € ]0, 1[, the point

X, = (1 — )»)xo + /'bcl

is also in ri C. This follows immediately from Theorem 3_.3‘. |
(c) The statement cl C = cl(cl C) is trivial. It 1s also trivial that cl(r1 C) <

cl C. To prove the opposite inclusion, let x, € cl C. Take any point xo €1 C, |

cf. Theorem 3.1. If x, = x,, then we have
x, €11 C < cl(r1 C),
as desired. If x, # x;, then we have

[x0,x:[ = 11C,

i
1
4
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cf. Theorem 3.3. Since each neighbourhood of x, contains points from
[x0,x4[, it follows that x, is in cl(ri C).

(d) To prove that r1 C = ri(cl C), we first note that
aff C = aff(cl C), (2)

since aft C1s closed. Then it is clear thatri C < ri(cl C). To prove the opposite

inclusion, iet x be in ri(cl C). Take any point x, eri C, cf. Theorem 3.1. If

Xo = X, then we have xeri C, as desired. If x, # x, then aff{x,,x} is a
line, and we have

aff {x,, x} < aff(cl C) = aff C.

Since x €ri(cl C), there 1s a point x; € aff {x,, x} such that x, ecl C and

x € Ixq,x;[. Application of Theorem 3.3 then yields x eri C. Hence, ri C =
ri(cl ).

To prove that 1 C = ri(ri C), we first verify that
aff C = aff(r1 C). (3)
Applying (2) to ri C instead of C and using (c), we obtain
ati(r1 C) = aff(cl(ri C))

= aff(cl C)
= aff C.

Now, using the notation int,.; - C for ri C, we have
ri(r1 C) = 1t g o(rl C)
= 1Nt (11 C),
where we have used (3). But
Ity (11 C) = intyge c(int,g - C)

= intaffC C
=r11C,

where we have used the standard fact that int(int M) = int M for any set M.
This completes the proof of (d).

(e) By definition we have

tbC=clC\riC,
rb(cl C) = cl(cl C) \ ri(cl O),
rb(r1 C) = cl(ri C) \ ri(ri C).

The statement then follows using (c¢) and (d).

(f) This has already been proved, cf. (2) and (3) above.
(g) This follows from (f). u
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The next theorem also depends on Theorem 3.3. It shows that the relative |

Interior points of a convex set C may be characterized in purely algebraic }
terms: '

Theorem 3.5. For any convex set C in R? and any point x € C the following
three conditions are equivalent:

(@) xeriC. f
(b) For any line A in aff C with xe€ A there are points y,, y1 € A N C such
that x € 1yo, ¥4[.

(c) For any point y € C with y # x there is a point z € C such that x € 1y, Z[,
l.e.any segment [y, x ] in C can be extended beyond x in C.

ProoF. The implications (a) = (b) and (b) = (c) are obvious. Therefore,
we need only prove (c) = (a). By Theorem 3.1 there is a point yeri C. If

y = X, there 1s nothing more to prove. If y # x, then by (c) there is a point
z € C such that x € ]y, z[. But then x is in ri C by Theorem 3.3. ]

e . -

We conclude this section with an application of Theorem 3.4(a). Let M
be any set in R Then there is a smallest closed convex set containing M,
namely, the intersection of all closed convex sets containing M. We call this

set the closed convex hull of M, and denote it by clconv M. As might be
expected, we have:

Theorem 3.6. Let M be any subset of R%. Then
clconv M = cl(conv M),

i.e. the closed convex hull of M is the closure of the convex hull of M.

PrOOF. Using Theorem 3.4(a) we see that cl(conv M) 1s a closed convex set
containing M. Since clconv M is the smallest such set, it follows that

clconv M < cl(conv M).
On the other hand, clconv M is a convex set containing M, whence

clconv M o conv M.

Since clconv M is also closed, this implies

clconv M > cl(conv M),
completing the proof. []

EXERCISES

)

3.1. Let P = conv{x,, ..., x,} be a polytope in R%. Show that a point x 1s in ri P if and

only if x is 2 convex combination of x;, . .., x, with strictly positive coefficients, i.e.
there are A, ..., A, such that

and 4, > 0fori=1,...,n

¥4, Supporting Hyperpianes anda naispacces N

3.2. Let C, and C, be convex sets in R?. Show that ri(C, + C,) =11 C; + 1i C,.
3.3. Let C be a convex set in R?, and let ¢: R —» R be an affine mapping. Show that

r1 o(C) = o(n1 C).

B 34. Let (C).., be a family of convex sets in R? such that

Nr1iC; # . (4)

Show that
clﬂCi= ﬂcl C;. (5)

Show that if (4) does not hold, then (5) need not hold.

3.5. Let (C;);=1 ... , be a finite family of convex sets in R? such that
(n) r1 C; # . (6)
i=1
Show that
1 ﬁ C; = (n) r1 C;. (7)
=1 =1

Show that if (6) does not hold, then (7) need not hold.

8. Supporting Hyperplanes and Halfspaces

Itis intuitively clear that when x 1s a relative boundary point of a convex set C :
then there is a hyperplane H passing through x such that all points of C not in
H are on the same side of H. One of the main results of this section shows that

it1s 1n fact so.

Let C be a non-empty closed convex set in R?. By a supporting halfspace of C
we mean a closed halfspace K in R? such that C « Kand H n C # &, where
H denotes the bounding hyperplane of K. By a supporting hyperplane of C we
mean a hyperplane H in R? which bounds a supporting halfspace.

In the definition of a supporting hyperplane H of C we allow C =« H
(in which case both closed halfspaces bounded by H are supporting halfspaces).
If C 1s not contained in H we shall call H a proper supporting hyperplane.

Analytically, a hyperplane H(y, «) 1s a supporting hyperplane of a non-
empty closed convex set C if and only if

oo = max {x, y) (1)
xeC
or
o = min <{x, y). (2)
xeC
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If (2) hoﬁlds for H(y, o), then (1) holds for H(—y, —a). Since H(—y, —a) = j
H(y, o), 1t follows that any supporting hyperplane H of C has the form H (y, @) B

such that (1) holds, whence C = K : .
supporting hyperplane such that C(y;:a)l‘(l(jzozga ?131};1111 eH\zay;C;hi‘Sit if H(y, ?;) 154 Corollary.4.2. A supporting hyperplane H of a non-empty closed convex set C in
only if 7 % proper if and. B R is a proper supporting hyperplane of Cifand only if Hnn C = .

We immediately get:

inf {x, y) < max <{x, y). The following result is fundamental:

xeC xelC

Theorem 4.3. Let C be a closed convex set in R®, and let x be a point in rb C. Then
there is a proper supporting hyperplane H of C such that x € H.

We first prove:

Thegrem 4.1. Let C be a non-empty convex set in R?, and let H be a hyperplane
in R%. Then the following two conditions are equivalent:
(@A) HnrnC = .

(b) Ciscontained in one of the two closed halfspaces bounded by H, but not in H.

PROOF. Asgume that- (a) holds. Let x, eri C, cf. Theorem 3.1. Then x, ¢ H by
(a). In particular, C is not contained in H. Suppose that there is a point x; € C

such that x, and x; are on opposite sides of H. Then there
: are y and N
that H = H(y, «) and y and o such §§

We shall build the proof of Theorem 4.3 upon the following:

Lemma 4.4. Let C be a non-empty open convex set in R?, and let x be a point
of R not in C. Then there is a hyperplane H in R such that xe H and

HnC= .

Proor. We shall use induction on d. The statement is trivially trueford = 0, 1.
We also need a proof for d = 2, however. So, let C be a non-empty open convex
set in R2, and let x € R?\ C. We shall prove that there exists a line L 1n R? such
that xe Land L n C = . Let S be a circle with its centre at x, and for each

A

Taking (Xos YD < o < Xy, YD point u € C let v’ be the unique point of § where the halfline
) 1 (1 — A)x + Au|d > 0}
Av= o, ) from x through u meets S. Then the set
<x19y>'—'<x09y> .i
and C' :={u'|lueC}
X;=(1— A)xy + Axy, i is an open arc in S. Since x ¢ C and C is convex, two opposite points of S can-

not both be in C’. Therefore, the angle between the two halflines from x

we have 4 € ]0, 1[, and so x, € Ix,., x ]
+ € Ixo, X4 Furthermore, an easy computation through the endpoints of C' is at most 1. Any of the two lines determined by

shows that {x T y) = a,whence x; € H. On the other hand, since x, e ri C and
X3 € ]xo, x4[, 1t follows from Theorem 3.3 that we also have x, e ri C, whence

x, € H n 11 C, a contradiction. In conclusion, C is contained in that closed
halfspace bounded by H which contains the point x,.

Conversely, assume that (b) holds. Suppose that there is a point

xe H Ari C. By (b) there is a point y € C\ H. Then by Theorem 3.5, (a) = (c)

there 1s a point z € C such that x € ]y, z[, whence

x=(1-AN)y+ iz

for a suitable A€ ]0, 1[. Now, there are u and « such that H = H
> ’ — (u, 04 and
C < K(u, ). Then {y, u) < o and {z, u> < a, whence )
xuy = (1 = Dy + Az, u)
= (1 = D)y, u) + Az, u)
<(l—=Aa+ Ax = o

At the.san}e time we have (x, u) = o since x € H, a contradiction. Therefore
H N 11 C 1s empty. |

one of these halflines can then be used as L. (If the angle is n, then, of course, L
is unique.)

Next, let d > 2, and assume the statement is valid for all dimensions less
than 4. Let C be a non-empty open convex set in R, and let x € RN C. (See
Figure 1 which illustrates the “difficult” situation where x € cl C.) Take any
7-dimensional affine subspace 4 of R¢such that xe Aand A n C # . Then
A n Cis anon-empty open convex set in A with x ¢ A n C.Identifying A with
R? and using the result on R* proved above, we see that there exists a line L
in A such that x € L and

LnAnC)y=LnC=g.

Let B be any hyperplane in R? orthogonal to L, and let z: R? —» B denote the
orthogonal projection. Then n(C) is a non-empty open convex set in B. More-
over, since n~ 1(n(x)) = L, we see that n(x) ¢ n(C). Then, by hypothesis, there
is a hyperplane H' in B such that n(x) € H' and H' n n(C) = . But then

H:=aff(H' U L) = n~\(H')

is a hyperplane in R withxe Hand Hn C = (. O
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Figure 1

We can now prove Theorem 4.3:

P}(OOF (Theorem 4.3). Whendim C = —1, 0, there 1s nothing to prove. So, let
dim C > 1, and let C and x be as described. We shall apply Lemma 4.4 to’the
convex set r1 C and the point x in the affine space aft C. (Here we need to
1dentify aff‘C with R® where e := dim(aff C).) To see that Lemma 4.4 applies
note 'Ehat r1 C 1s non-empty by Theorem 3.1, convex by Theorem 3.4(b) anci
open in aft C; furthermore, x is in aff C. Application of Lemma 4.4 then y}elds
the existence of a hyperplane H' in aff C such that x € H' and B’ N C = .
Clearly there is a hyperplane H in R? such that H ~ aff C = H'. (If already
aff C = R’, then H = H'.) Then we also have xeH and H A riC = .

Theorem 4.1, (a) = (b) finally shows that H is in fact a proper supporting
hyperplane.

-
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The following theorem is also fundamental:

Theorem 4.5.-Let C be a non-empty closed convex set in R®. Then C is the inter-
section of its supporting halfspaces.

ProOOF. When dim C = 0, the theorem is clearly true. When C = RY, there
are no supporting halfspaces; hence, the theorem is also true in this case.
So, let dim C > 1, and let x be a point of R? outside C; we shall prove that
there is a supporting halfspace K of C such that x ¢ K. If x ¢ aff C, there 1s a
hyperplane H in R? with aff C = H and x ¢ H. The closed halfspace bounded
by H which does not contain x then has the desired property. If xe aff C, let z
be a relative interior point of C, cf. Theorem 3.1. Then [z, x] n C 1s a closed
segment [z, u], where uerb C and [z, y[ 1s1n 1 C, cf. Theorem 3.3. Now, by
Theorem 4.3 there is a proper supporting hyperplane H of C such that u € H.
The supporting halfspace K bounded by H then has the desired property. In
fact, suppose that x € K. As we have z € r1 C, it follows from Corollary 4.2 that
z¢ H, whence z € int K. But then Theorem 3.3 shows that ]z, x[ 1s 1n int K,
which 1s contradicted by the fact that the point u belonging to ]z, x[ 1s in
H = bd K. ]

One may say that Theorem 4.5 describes an “external representation” of a
closed convex set. In the nextsection we shallmeetan “internalrepresentation”

of a compact convex set.

EXERCISES

4.1. Let C, and C, be convex sets in R?. A hyperplane H in R is said to separate C, and
C, if C, is contained in one of the two closed halfspaces bounded by H and C, is
contained in the other closed halfspace bounded by H. Note that we allow C, <« H
and C, < H. If at least one of the two sets C, and C, is not contained in H, then H
1S said to separate properly. Show that there exists a hyperplane H separating C,
and C, properly if and only it r1 C; n1r1 C, = (. (Hint: Consider the convex set
C:=C, — C,. Use Exercise 3.2.)

4.2. Let C, and C, be convex sets in R?. A hyperplane H(y, «) is said to separate C,
and C, strongly if for some ¢ > 0 both H(y, « — ¢) and H(y, a + ¢) separate C,
and C,, cf. Exercise 4.1. Show that there exists a hyperplane H separating C, and
C, strongly 1f and only if 0 ¢ cl(C; — C,). Deduce, in particular, that if C, and C,
are disjoint closed convex sets one of which is compact, then there is a strongly
separating hyperplane.

Q5. The Facial Structure of a Closed Convex Set

. In this section we shall study certain “extreme” convex subsets of a closed

convex set C, called the faces of C. We shall prove, among other things, that
when the set C 1s compact, then it is the convex hull of its 0-dimensional faces.
Thic ic the “infernal renresentation” mentioned in Section 4.
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In the following, let C be a closed convex set in R?. A convex subset F of C
1s called a face of C if for any two distinct points y, z € C such that ]y, z[ N Fis
non-empty, we actually have [ y,z] < F. Note thatinordertohave[y,z] « F
1t suffices by the convexity of F to have y, z€ F.

The subsets ¢ and C of C are both faces of C, called the improper faces; all
other faces are called proper faces.

A point x € C 1s called an extreme point of C it {x} 1s a face. This means, by
definition, that x is not a relative interior point of any segment [y, z] in C,

or, equivalently, that C\ {x} i1s again convex. The set of extreme points of C 1s
denoted by ext C.

Aface F of Ciscalled a k-faceifdim F = k. Thus, the O-faces are the extreme
points. (Strictly speaking, {x} 1s a face if and only if x is an extreme point.) A
facet of Cisaface F with0 < dim F = dim C — 1.

It 1s clear that the intersection of any set o/ of faces of C is again a face of C.
Hence, there 1s a largest face of C contained in all the members of &7, namely,
the intersection of all the members of &/. However, we can also conclude that
there 1s a smallest face of C containing all the members of o7, namely, the
intersection of all faces of C containing all the members of .&7. (Note that C
itself 1s such a face.) Denoting the set of all faces of C by % (C), we may express

this by saying that the partially ordered set (#(C), <) 1s a complete lattice
with the lattice operations

inf o = () {F e #(C)|F e o),
sup & = () {Ge F(C)|VFe A F < G}.

(For lattice-theoretic notions, see Appendix 1.) We shall call (#(C), <) the
face-lattice of C. (The partially ordered set (#(C), o) is, of course, also a
complete lattice. However, when speaking of the face-lattice of C we always
mean &% (C) equipped with <.)

When C 1s a closed convex set with dim C > 1, then certain faces of C have
a particular form: If H is a proper supporting hyperplane of C, cf. Corollary
4.2, then the set F := H n C is a proper face of C. In fact, F is a non-empty
proper subset of C by definition, and being the intersection of two convex
sets 1t 1s also convex. To see that it has the face property, let y and z be two
points of C such that ]y, z[ n F is non-empty. Then (1 — A)y + Az is in H for
some A€ O, 1[. Now, there are u and « such that H = H(u, «) and C <
K(u, ). We then have (y,u) < a, (z,u) <aand {(1 — Ay + Az,u) = ¢,
whence (y, uy = {(z,u) = a,1.e. yand zarein H, and therefore in F, as desired.
A face F of C of the form F = H n C, where H is a proper supporting hyper-
plane of C, 1s called a (proper) exposed face. For any closed convex set C
(including sets C withdim C = —1, 0) it is convenient also to consider & and
C as exposed faces of C; we shall call them improper exposed faces.

(There 1s a formal problem 1n connection with the definition of a proper
exposed face of C, namely, that it depends on the choice of the particular
affine space containing C. If C is “initially” lying in R¢ we would like to be

§5. The Facial Structure of a Closed Convex Set 31

free to consider it as a subset of any affine subspace 4 of R? containing
aff C. We can, however, easily get away with this difficulty, since the hyper-
planes in A are just the non-empty intersections H N A, where H 1s a hyper-
plane in R? not containing A4.)
A point x € C is called an exposed point of C if {x} 1s an exposed face. The
set of exposed points of C is denoted by exp C. Thus, exp Cis a subset of ext C .
The set of exposed faces of C is denoted by &(C). The order-theoretic

- structure of (&(C), <) will be discussed later in this section.

In order to illustrate the notions introduced above, consider the following
example. Let C be the convex hull of two disjoint closed discs in R? having the
same radius. Then the boundary of C consists of two closed segments [x;, x, ]
and [ x5, x, ], and two open half-circles. The 1-faces of C are the two segments
[x,, 5], [x3, x4]; these faces are in fact exposed. The extreme points (1.€. the
0-faces) are the points x;, X,, X3, X4 and the points belonging to one qf the
open half-circles. Clearly, each point belonging to one of the open half-circles
is even exposed. The extreme points x;, x,, X3, X4 are not exposed however;
in fact, a supporting hyperplane of C containing one of the points x;, x;, X3,
x, must also contain one of the two segments. In particular, this shows that
in general there are non-exposed faces.

Any proper exposed face is the intersection of two closed sets, and there-

fore it is closed itself. We actually have:

Theorem 5.1. Every face F of a closed convex set C in R? is closed.

Proor. Fordim F = — 1, O there is nothing to prove. Assume that dim F > 1,
and let x be any point in ¢l F. Let x, be a point in r1 F, cf. Theorem 3.1. If
x = Xx,, we have x € F as desired. If x # x,, then [x,, x[ 152 subset of r1 F by
Theorem 3.3. In particular, Jx,, x[ » F # J, whence x is in F by the defini-
tion of a face. ]

Theorem 5.1 shows among other things that it makes sense to talk about
“q face of a face” (of a closed convex set):

Theorem 5.2. Let F be a face of aclosed convex set C in R?, and let G be a subset
of F. Then G is a face of C if (and only if ) G is a face of F.

PrOOF. It follows immediately from the definition that if the set G 1s a face of
C, then it is also a face of F. Conversely, suppose that G 1s a face of F, and let

y and z be points of C such that ]y, z[ intersects G. Since G <= F, the segment
1y, z[ also intersects F. This implies y, z € F since F 1s a face of C. But then we

also have y, z € G, as desired, since G 1s a face of F. []

One should note that the “if” part of Theorem 5.2 is not valid in general
with “face” replaced everywhere by “exposed face.” In fact, in the example
above x, is an exposed point of [x;, x,], and [x,, x,] 1s an exposed face of C,
but x, is not an exposed point of C.
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Theorem 5.3. Let F be g

Jace of a closed convex set C in R? such that F # C.
Then F < rb C.

1, 0 there is nothing to prove. So, assume that we
havedim C > 1. Let F be a face of C '

We shall complete the proof by showing that F = C. Let y be an arbitrary
pontin C.If y = x, then y is in F , as desired. If y # x, then there is a point

z m C such that x € ] ¥, z|, cf. Theorem 3.5, (@) = (c). Since x is in F, and F
is a face, it follows that yisin F.

GSF.ThenG b F.

PrOOF. First note that G is a face of F,

cf. Theorem 5.2. The statement then
follows immediately from Theorem 5.3.

PROOF. First note that we have aff G < aff F s;

aft G = aff F. Thenri G < ri Fsince G — F.Combining with Corollary 5.4 we

obtain ri G = (. By Theorem 3.1 this implies G = ¥, whence also F — %)
since aff F = aff G, contradicting that G « F by

we must have aff G ¢ aff F, whence dim G < dim F. (]

For any subset M of a closed convex set C in ¢ there is a smallest face of C
containing M, namely, the intersection of all faces containing M. Theorem 5.3

shows that when M contains a point from ri C, then the smallest face Con-
taining M is C itself.

Theorem 5.6. Let C be a closed convex set in R, let x be a point in C, and let F

be a face of C containing x. Then F is the smallest face of C containing x If and
onlyif xeriF.

PROOF. If x e 11 F, then F is the smallest face containing x by Corollary 5.4. If
x €rb F, then by Theorem 4.3 there is a face G (in fact, exposed) of F such that

X€G & F. By Theorem 5.2, G is also a face of C, and therefore F is not the
smallest face containing x. []

Corollary 5.7. Let C be a closed convex set in k¢

Then the sets ri F, where
FeZF(ON{T}, form a partition of C.

PROOF. The statement amounts to saying that for each x e C there is a unique

face F of Csuchthat xeri F. However, Theorem 5.6 gives such a unique face,
namely, the smallest face of C containing x. []

assumption. In conclusion, [

....
<

Next, we shall study the exposed faces. We first prove:

Theorem 5.8. Let F be afacet of a closed convex set C in R®. Then F is an exposed
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PrOOF. By the definition of a facet we‘necessarily have dim F _5>_60, }Vhe?ﬁ:
by Theorem 3.1 there i1s a point x e r1 F. Then, by Theorem 5.6, F is the
smallest face of C containing x. On the other hand, Theorem 4.3 shows Ct 2
there is an exposed face G of C such that x € G. It then followsthat F « G & C.
Using Corollary 5.5 we obtain

dimC — 1 =dimF <dim G < dim C,

whence dim G = dim F. Corollary 5.5 then shows that F = G, and therefore
F 1s exposed.

At the beginning of this section we noted that the intersection 'of any set of
faces of a closed convex set C 1s again a face of C. The following theorem
shows that a similar result holds for exposed faces:

Theorem 3.9. Let {F;|i € I} be a set of exposed faces of a closed convex set C in
R4 and let

F== mFi.

iel
Then F is also an exposed face of C.

ProOF.When F 1s (J or C, there is nothing to prove. So, in the following we may
assume that F 1s a non-empty intersection of proper exposed faces F;, i e I.

We shall first consider the case where I is a finite set, say I = {1, ..., n}.
Now, for each i € I there is a hyperplane H(y,, «;) such that

F,= H(y;,o;) n C (1)
and
C < K(y;, ). (2)

We may assume without loss of generality that o € int C. Then o 1s interior for
all the K(y;, o;)’s, and therefore each «; 1s > 0. Letting

=0 Y,
fori=1,...,n,(1) and (2) become
Fi == H(Zi, 1) M C,
C < K(z;, 1).
Let
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Then forany x € C we have

<xa ZO>
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‘in"1-1=1, (3)

IA

implying that
C < K(zq4, 1).

Furthermore, we have equality in (3) ifand only if x € H(z;, 1)fori = 1, ..., n.
This shows that

H(Zo, l)ﬁ C — F.

Hence, F i1s an exposed face.

When I is infinite, it suffices by the preceding to prove that there exist
i1, ..., I, € Isuchthat

Let i, be any of the i’s in I. If F = F;, we have the desired conclusion. If
F ¢ F,; , then there is i, € I such that

F - Fil (M Fiz g Fil'
From Corollary 5.5 1t follows that
dim(F; N F;)) <dimm F;,.

If F = F; n F; ,wehave the desired conclusion. If F & F; N F;,, then there
1S iy € I such that

FcF,nF,nF,gF, NnF,.
Again from Corollary 5.5 1t follows that
dim(F; n F, n F;,) <dm(F;, n F,).

HF = F; nF, n F;,,wehavethedesired conclusion lf F & F;, nF;, " F,,,
there1s i, € I, etc. Since the dimension 1n each step i1s lowered by at least 1, we

must end up with i,, ..., i, € I such that
F — mFiv’
v=1]

as desired. []
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It follows from Theorem 5.9 that the partially ordered set (8(C), <) of
exposed faces of a closed convex set C 1n R? is a complete lattice with

inf of ==\ {Fe&(C)|F e &}
sup o = (| {Ge&(C)|VFed: F < Gj

for o < &(C). It is interesting to note, however, that in general (8(C), <) 18
not a sublattice (cf. Appendix 1) of (#(C), <). In fact, when &/ is a subset of

" &(C), then sup & computed in (£(C), =) may be difierent from sup &/

computed in (#(C), <). (The inf-operation, however, is the same In
(&(C), <) asin (#(C), <).) For example, it is not difficult to construct in R°
1 closed convex set C with the following properties. Among the extreme
points of C there are three, say x;, x,, X3, such that conv{x,, X,, X3} 1 an
exposed face, x, and x, are exposed points, but the face [x;, x,] 1S not
exposed. (See Figure 2.) Then if we consider the subset .« of &(C) consisting
of the two exposed faces {x,} and {x,}, we see that sup & i (#(C), <)
is [x,, x,], whereas sup & in (£(C), <) is conv{xy, x;, X3}

Figure 2

The final theorem of this section deals with extreme points. Closed hali-
spaces and affine subspaces are closed convex sets without extreme points.
We shall prove that compact convex sets are “spanned™ by their extreme
points. This result is known as Minkowski's Theorem:

Theorem 5.10. Let C be a compact convex set in R?, and let M be a subset of C.
Then the following two conditions are equivalent:

(a) C = conv M.
(b) ext C < M.

In particular,
(c¢) C = conv(ext C).

PrOOF. Suppose that there is an extreme point x of C which 1s not in M. Then
M is a subset of C\{x}, and since C\ {x} is convex by the definition of an
extreme point, it follows that conv M is also a subset of C\{x}. This proves

(a) = (b).
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To prove (b) = (a) it suffices to show that
C < conv(ext O). (4)

(In fact, suppose that (4) holds. Since the opposite inclusion of (4) 1s obvious,
it then follows that C = conv(ext C). But then we also have C = conv M for
any subset M of C containing ext C.) We shall prove (4) by induction on the
dimension of C. Fordim C = —1, 0 there is nothing to prove. Fordim C = 1
the statement is clearly valid. Suppose that the statement is valid for all com-
pact convex sets of dimension <e, where e > 2, and let C be a compact
convex set of dimension e. Let x be any point in C; we shall prove that x is a
convex combination of extreme points of C, cf. Theorem 2.2. If x itself is an
extreme point, there is nothing to prove. If x is not an extreme point, then
thereis a segment in C having x in its relative interior. Extendin g the segment,
if necessary, we see that there are in fact points Yo, ¥1 €rb C such that
X € ]¥o, y1[. Let F, and F, be the smallest faces of C containing y, and y,,
respectively. Then F and F, are proper faces of C, cf. Corollary 5.7. They are,
in_ particular, compact convex sets, cf. Theorem 5.1, and they both have
dlrpension <e, cf. Corollary 5.5. Then, by the induction hypothesis, there are
points xo,, ..., Xo, € €xt Foand xy,,..., x,, € ext F, such that y, is a convex
combination of the x,,’s and y, is a convex combination of the X1;S. SInce x 1s
a convex combination of y, and y,, it follows that x is a convex combination
of the x,,’s and x, ;’s. To complete the proof, we note that the Xo; Sand x, ;s are
in fact extreme points of C; this follows from Theorem 5.2. []

Corollary 5.11. Let C be a compact convex set in Rewithdim C = n. Then each
point of C is a convex combination of at most n + 1 extreme points of C.

PROOF. Combine Theorem 5.10(c) and Corollary 2.4. L]

EXERCISES

5.1. Show that ext C is closed when C is a 2-dimensional compact convex set.
5.2. Let C be the convex hull of the set of points («;, «,, a3) € R? such that
0(1"—_0(2:0, 0(36["‘"1, 1],

or

Ot3=0, (Otl*—l)z-l-d%:l.

Show that ext C is non-closed.

J.3. Let C be a closed convex set in R® Show that if a convex subset F of C is a face
of C, then C\F is convex. Show that the converse does not hold in general.

54. Let C be a non-empty closed convex set in R?. An affine subspace 4 of R is said to

support CitA n C # & and C\ A is convex. Show that the supporting hyperplanes
of C in the sense of Section 4 are the hyperplanes that support C in the sense just
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defined. Show that for a non-empty convex subset F of C, the following three
conditions are equivalent:

(a) F is a face of C.
(b) There is a supporting affine subspace A of C such that A n C = F.

(c) aff F 1s a supporting affine subspace of C with (aft F) n C = F.

(The equivalence of (a) and (b) throws some light upon the difference between faces
and exposed faces.)

5.5. Let C be a compact convex set in R? and let M be a subset of ext C. Show that

conv M 1s a face of C if and only if
(aff M) N conv((ext CO)\M) = J.
5.6. Show that there are compact convex sets C such that
C # conv(exp C).
Prove Straszewicz’s Theorem: For any compact convex set C one has
C = clconv(exp C).

(Warning: This i1s not easy.)

§6. Polarity

Duality plays an important role in convexity theory in general, and i poly-
tope theory in particular. Actually, we shall be working with two duality
concepts: a narrow one called polarity and a broader one which we shall
simply refer to as duality. The notion of polarity applies to convex sets in
general, whereas duality in the broader sense will only be applied to polytopes.

This section deals with polarity. With each subset M of R’ we shall
associate a certain closed convex subset M° of R? called the polar of M. When
C is a compact convex set having o in its interior, then the polar set C° has the
same properties, and C is the polar of C°. For such a pair of mutually polar
compact convex sets having o as interior point, the polar operation induces
a one-to-one inclusion reversing correspondence between &(C) and &(C°).

One should note that the notion of polarity is a linear concept, while 1n the
preceding Sections 2-5 we worked within the framework of affine spaces. In
particular, the polar operation is not translation mvariant.

For any subset M of R¢, the polar set is the subset M° of R¢ defined by
Me:={yeRIVxeM:{x,y> < 1}

= {ye R%|sup, .y {x, y> < 1}.
Equivalently,
M° = () K(x, 1). (1)

xeM
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Since yis in K(x, 1)ifand only if x is in K(y, 1), it follows from (1) that we have

: ‘ the opposite inclusion, let z be a point not 1n clconv({o} U M); we shall prove
YyEM° < M < K(y, 1). 2) I

that there is a closed halfspace K(u, 1) containing M such that z ¢ K(u, 1), cf.

It also follows from (1) that M° is a closed convex set containing o, since each

K(x, 1) 1s such a set. Furthermore, it is clear that

M,<cM,=M] > M. (3)

We shall prove the following:

Theorem 6.1. For any subset M of R? one has:

(@) If M is bounded, then o is an interior point of M°
(b) If o is an interior point of M, then M° is bounded.

ProoF. For z € R* and r > 0 we denote by B(z, r) the closed ball centred at z

with radius r, i.e.
B(z,r):=={xeR?||x — z|| < r}.
Here |-|| denotes the Euclidean norm, i.c.

lul = \/<us w).

Now, 1t 1s an elementary standard fact that

sup <x, yy = rlyl

x € B(o, r)

for all ye R? and r > 0. This shows that

B(o,r)° = B(o,r™ ). (4)

Therefore, if M is bourlded, 1.e. M < B(o, r)for somer > 0, then using (3) and
(4) we see that B(o, r .1) < M”, showing that o is an interior point of M°.
This proves (a). Next, if o is an interior point of M, i.e. B(o, r) = M for some

r > 0, then again using (3) and (4) we obtain M° < B(o, r 1), showi
> | . , Showing th
M?* 1s bounded. This proves (b). ( ) e Elt

}:26 polar opera'ﬁion can, of course, be iterated. We write M°° instead of
(M®)°. The set M°° is called the bipolar of M. It can be described as follows:

Theorem 6.2. For any subset M of R* we have
M®® = clconv({o} U M),

l.e. M®® is the smallest closed convex set containing o and M.
PROOF. We have

M= (YK(y,)= ()} K1), (5)
y e M® M<Ky, 1) '

cf. (1) anq ( ?). This formula immediately implies that M°° is a closed convex
set containing o and M, whence M°° contains clconv({o} U M). To prove

;-f ~ (5). By Theorem 4.5 there is a supporting halfspace K(y, @) of ciconv({o} U M)

such that z ¢ K(y, «). We then have
max{{x, y>|x e clconv({o} U M)} = a < {z, V).

Since o is in clconv({o} U M), we have o > 0. Therefore, there exists f > O
such that
max{{x, y>|x € clconv({o} U M)} < p <<z, ). (6)

Taking u := f~ 'y, we obtain from (6)
max{{x, ud|x e clconv({o} U M)} <1 < (z,u),

implying M < K(u, 1) and z ¢ K(u, 1), as desired. L]
From Theorems 6.1 and 6.2 we immediately get:

Corollary 6.3. Let C be a compact convex set In R? having o as an interior point.
Then C° is also a compact convex set having o as an interior point. Furthermore,

COO — C

In the following, C is assumed to be a compact convex set in R? with
o € int C. To emphasize the completely symmetric roles played by C and C°,
as explained by Corollary 6.3, we denote C° by D.

The assumption o € int C implies that every supporting hyperplane of C 1s
a proper supporting hyperplane, and has the form H(y, 1) for a unique
ye RN\ {o}. We then have C < K(y, 1), and hence ye D. The following
theorem gives more information about this situation:

Theorem 6.4. For any y € R, the following two conditions are equivalent .

(a) H(y, 1) is a supporting hyperplane of C.
(b) yebd D.

Similarly, for any x € R®, the following two conditions are equivalent :

(c) H(x, 1) is a supporting hyperplane of D.

(d) xebd C.

ProOF. If (a) holds, then y € D and
sup <{x, yy = 1. (7)
xeC

(Actually, the supremum is a maximum.) If we had y € int D, then we would
also have Ay € D for a certain A > 1. Since D is the polar of C, we would then

have
sup {x, Ay> < 1,

xeC

contradicting (7). Hence y e D\int D = bd D, as desired.
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Conversely, if (b) holds, then, in
polar of C, we then have

0 <sup{x, y> < 1.

xe(C

Now, if in (8) we had <1, then we would have

sup {x, Ay> =1

for a suitable A > 1, whence Ay would be in C° (=D). Since o €int D and
y € Jo, Ay[, this would imply yeint D by Theorem 3.3, a contradiction.

Therefore,

sup <x, yy = 1.

xeC

Finally, this supremum is actually a maximum by the compactness of C and
the continuity of (-, y>. Hence, H(y,
desired.

As explained earlier, C and D play completely symmetric roles. Therefore,
the equivalence of (¢) and (d)is a consequence of the equivalence of (a) and (b).

L

Corollary 6.5. For any x, y € R?, the following four conditions are equivalent:

(@) H(y, 1) is a supporting hyperplane of C at x.
(b) H(x, 1) is a supporting hyperplane of D at y.
() <x,¥>=1,xebd C, yebd D.

d) <x,y>=1,x€eC, yeD.

PROOF. The equivalence (a)<> (c) follows immediately from Theorem
6.4, (a) < (b). The equivalence (b) < (¢) then follows by symmetry, or from
Theorem 6.4, (c) <= (d). It is trivial that (c) = (d). We shall complete the proof
by showing that (d) = (a). From ye D (=C°) it follows that C = K(y, 1), and

from (x, y> = 1 it follows that x e H(y, 1). Since x € C, it then follows that
H(y, 1) 1s a supporting hyperplane of C at x. []

Now, for an exposed face F of C, proper or improper, we define
F*:={yeD|VxeF:{(x,y) = 1}.

Similarly, for an exposed face G of D we define

G* ={xeC|VyeG: (x,y) = 1}.

The motivation for this concept
face of C, then a point y e R is
hyperplane of C with F < H(y,
6.5, (a) <> (d). The same holds
improper exposed faces C and

is the fact that when F is a proper exposed
in F* if and only if H(y, 1) is a supporting
1); this follows immediately from Corollary

for a proper exposed face G of D. For the
& of C, we have C* = @f and &F* = D. And

particular, y is in D\ {0}. Since D is the |}

8)

1) 1s a supporting hyperplane of C, as ]

-, iy ek e iy
R B e e G
- . "'l".l £ D
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for the improper exposed faces D and ¢ of D, we have D® = (¥ and 7" = C.
(The unpleasant feature that 2§° may have different “values” s, of course,
due to the fact that we use the same notation for different mappings.)

Theorem 6.6. Let F be a proper exposed face of C. Then F* is a proper exposed
face of D. Similarly for a proper exposed face G of D.

PROOF. By definition,
F*= (YD n H(x, 1).

xeF
When F 1s proper, then each x € F 1s in bd C, whence H(x, 1) 1s a supporting
hyperplane of D, cf. Theorem 6.4, (d) = (¢). Therffgre, each set D n H(x, 1)
1s a proper exposed face of D, implying that F~ is an ex.posed'face of D,
cf. Theorem 5.9. Furthermore, F° is proper or empty. But since F is a proper
exposed face, there 1s a supporting hyperplane H(y, 1) of C .such thit
F=CnH(y,1). From the remark above following the definition of F_,
we then see that y € F°, whence F° # (.

By Theorem 6.6, it makes sense to iterate the A-operation. Writing F°°

instead of (F°)°, we see that for the improper exposed faces C illd. & of Cwe
have C°* = C and &°° = . Moreover, by Theorem 6.6, F** is a proper
exposed face of C when F 1s a proper exposed face of C. We actually have:

Theorem 6.7. Let F be a proper exposed face of C. Then F°° = F. Similarly for
a proper exposed face G of D.

ProoOF. By definition,
()} C~H(y, ).
ye F*

But since y is in F° if and only if H(y, 1) is a supporting hyperplane of C with
F < H(y, 1), we see that F*° is the intersection of all proper exposed faces _o_f
C containing F. This intersection, of course, i1s simply F itself. L

For an exposed face F of C, we call the exposed face F° of D the conjugate
face of F; the same applies to an exposed face G of D. Tbeorerps 6.6 and
6.7 show that the exposed faces of C and D go together in pairs F, G of
mutually conjugate faces, both proper or both improper. o

It is clear that the A-operation reverses inclusions. The following is,
therefore, a consequence of Theorems 6.6 and 6.7:

Corollary 6.8. The mapping F v F°, where F € £(C), is an anti-isomorphism

1 from(&(C), <) onto (E(D), <), and the mapping G G°, where G € &(D), is an

anti-isomorphism from (&(D), <) onto (8(C), <). The two mappings are
mutually inverse.
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Anti-isomorphisms reverse inf and sup. Therefore, Corollary 6.8 yields:

Corollary 6.9. Let {F;|ic 1} be a set of exposed faces of C, let F, denote the
largest exposed face of C contained in all the F ;s (i.e. F  is the intersection of the
F;s),and let F ; denote the smallest exposed face of C containing all the F;’s. Then
F, is the smallest exposed face of D containing all the F;’s, and F is the largest
exposed face of D contained in all the F;’s (i.e. F is the intersection of the
F:’s). Similarly for a set of exposed faces of D.

We remind the reader that for some time we have been working under the
general assumption that C and D are mutually polar compact convex sets in
R? having o as an interior point. This assumption is maintained in the follow-

ing theorem. (Among other things, this explains the meaning of d in the
formula.)

Theorem 6.10. Let F and G be a pair of mutually conjugate faces of C and D,
respectively. Then

dimF +dim G <d — 1.

PrROOF. The conjugate face of the improper exposed face ¢ of C is the im-
proper exposed tace D of D. Similarly, the conjugate face of the improper
exposed face C of C is the improper exposed face ¢ of D. Sincedim ¢ = —1,
dim C = danddim D = d, we see that the formula holds when F 1s improper,
in fact with equality. Consequently, we need only consider the case where F is
a proper exposed face of C; then the conjugate face G of D is also proper, cf.
Theorem 6.6. Now, by the definition of the A\ -operation,

G=Dn () H(x,1).

xeF

Therefore, G 1s a subset of the affine subspace ﬂx&. r H(x, 1), whence

dim G < dim () H(x, 1). 9)

xeF

By (9), the affine subspace ()..r H(x, 1) is non-empty; therefore it is a
translate of the linear subspace (), .r H(x, 0), and so

dim () H(x, 1) = dim{"} H(x, 0).

xeF

(10)

xeF

But

ﬂH(x, 0) = {yeR*|VxeF:<{x,y) = 0}

xeF

= F! = (span F)*.

|*.E‘
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Therefore,
dim (") H(x, 0) = dim((span F)")

xeF
= d — dim(span F)
= d — (dim(aftf F) + 1)
=d — 1 — dim(aft F)
=d—1—dimF,
where we have used the fact that o ¢ aft F to obtain
dim(span F) = dim(aft F) + 1.
Combining now (9), (10) and (11), we obtain the desired formula.

(11)

EXERCISES
6.1. Show that (AM)° = A7 'M° when 4 # 0.
6.2. Show that (M°°)° = M".
6.3. Show that (| J;c; M))° = [ )ies M;.
6.4. Show that
(ﬂ C,-) = clconv | | C}
iel iel
when the sets C; are closed convex sets containing o.

6.5. For e < d, identify R® with the subspace of R? consisting of all (x;,...,x,) € R?
such that x,,, = --- = x, = 0. Let IT denote the orthogonal projection of R* onto
Re. Show that for any subset M of R we have

(M) = M° A R,

where TTI(M)° denotes the polar of [I(M) in R and M° denotes the polar of M 1n
R,

6.6. Let C and D be mutually polar compact convex sets. Let F be a proper exposed
face of C, and let G := F°. Show that

G=Dn () H(x 1),

xeextF

and show that
G =D n H(xy, 1)
for any relative interior point x, of F.

6.7. Let C and D be mutually polar compact convex sets. Extend the definition of the
A-operation by allowing it to operate on arbitrary subsets of C and D. Show that
when M is a subset of C, then M®®:= (M")" is the smallest exposed face of C
containing M.



CHAPTER 2
Convex Polytopes

7. Polytopes

A (convgx) polytope is a set which is the convex hull of a non-empty finite set,
see Section 2. We already know that polytopes are compact. We may,
therefore, apply Section 5 on the facial structure of closed convex sets to

polytopes. As one might expect, the facial structure of polytopes is consider-
ably simpler than that of convex sets in general.

A polytope P = conv{x,, ..., x,} is called a k-polytope if dim P = k.
This means that some (k + 1)-subfamily of (x,. .., x,)is affinely independent,
butno such (k + 2)-subfamily is affinely independent. By a k-simplex we mean
a k-polytope which is a simplex. A simplex is a k-simplex if and only if it has
k + 1 vertices, cf. Section 2. A 1-simplex is a closed segment. A 2-simplex is
called a triangle, a 3-simplex is called a tetrahedron.

We have the following description of polytopes in terms of extreme points:

Theorem 7.1. Let P be a non-empty subset of R%. Then the following two condi-
tions are equivalent:

(a) Pis a polytope.
(b) P is a compact convex set with a finite number of extreme points.

PROOF. When P is a polytope, say P = convixy,..., X,}, then P is compact
by Corollary 2.9. Next, Theorem 5.10, (a) = (b) shows that ext P is a subset of

{X1,...,X,}, and hence is a finite set. The converse follows immediately from
Theorem 5.10, (b) = (a). ]

PreQ /. rOLYLUPCS ‘e

Following common usage, we shall henceforth call the extreme points, i.e.

the O-faces, of a polytope P the vertices of P. We shall continue to denote the
E set of vertices of P by ext P. The 1-faces are called the edges of P.

The vertices of a simplex S in the sense used in Section 2 are, in fact, the

extreme points (i.e. vertices) of S. This follows immediately from Theorem
B 5.10 or Theorem 7.2 below.

The set {x4, ..., x,} spanning a polytope P = conv{x,, ..., x,} is of

¥ course not unique (except when P is a 1-point set): in fact, one may always

add new points x,. 4, ... already in P. However, there is a unique minimal
spanning set, namely, the set ext P of vertices of P:

Theorem 7.2. Let P be a polytope in R®, and let {x, ..., x,} be a finite subset
of P. Then the following two conditions are equivalent:

(@) P = conv{xq, ..., X,}.
(b) ext P < {x4,..., X,}.

In particular,
(¢) P = conv(ext P).

PrOOF. Noting that polytopes are compact, the statement follows immedi-
ately from Theorem 5.10. []

We shall next study the facial structure of polytopes in general.

Theorem 7.3. Let P be a polytope in R%, and let F be a proper face of P. Then F
is also a polytope, and ext F = F n ext P.

ProoF. We begin by noting that Pand F are compact, cf. Theorem 7.1, (a)=>(b)
and Theorem 5.1. Now, Theorem 5.2 shows that the extreme points of F are
just those extreme points (vertices) of P which arein F,i.e.ext F = F n ext P.
Since ext P is a finite set by Theorem 7.1, (a) = (b), it follows that ext F is a
finite set. Application of Theorem 7.1, (b) = (a) completes the proof. []

Corollary 7.4. Let P be a polytope in R®. Then the number of faces of P is
finite.

PrROOF. The number of extreme points of Pis finite by Theorem 7.2, (a) = (b).
Each face of P is the convex hull of extreme points of P by Theorem 7.3 and
Theorem 7.2(c). Therefore, the number of faces is finite. []

The following 1s a main result:

Theorem 7.5. Let P be a polytope in R®. Then every face of P is an exposed face.

PROOF. It suffices to prove the statement for d-polytopes in RY. We shall use
induction on d. For d = 0 there is nothing to prove, for d = 1 the statement
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is trivial, and for d = 2 it is obvious. Suppose that the statement is valid for |
all polytopes of dimension <d, where d > 3, and let P be a d-polytope in
R?. For improper faces of P there is nothing to prove, so let F be a proper face |
of P. Let x be a relative interior point of F, cf. Theorem 3.1, and let H bea §
proper supporting hyperplane of P at x, cf. Theorem 4.3. Then HN P 1s a
proper exposed face of P containing x. Using Theorem 5.6, we see that !
FcHNP If F=HnP, then F 1s exposed, as desired. If F & HN P,
then F is a proper face of H n P, cf. Theorem 5.2. (See Figure 3.) Since |

g;.i dim(H n P) < d, and H N P is a polytope, cf. Theorem 7.3, it follows from
' the induction hypothesis that there is a proper supporting hyperplane H’
- of Hn Pin aff(H n P) such that F = H' n (H n R). This hyperplane H' we
may extend to a hyperplane 4 in H such that

F=AnNP. (1)

Note that dim 4 = d — 2 > 1. Let B be a 2-dimensional affine subspace of
R? which is orthogonal to A4, and let = denote the orthogonal projection of
RY onto B. Then n(A) is a 1-point set. Furthermore, n(P) is a 2-polytope in B.
We claim that n(A4) is a vertex of n(P). If not, then there are points y and z

in P such that n(y) # n(z) and
n(A4) = (1 — Ha(y) + An(z)

for some A€ 10, 1{. Let

u:=(1— Ay + Az

Then u is in P, and n(u) = n(4), whence u is in A4 since n~ '(n(A4)) = A.
Therefore, u is in F, cf. (1). Since F is a face of P, it follows that y and z are
in F. But F is a subset of A, whence n(v) = n(A) for all v e F. In particular,
n(y) = n(z), a contradiction which proves that n(A) is a vertex of n(P). By
the 2-dimensional version of the theorem we then see that there 1s a line
L in B such that

L n n(P) = n(A).

Then

H,:=aff(Au L) =n"'(L)
is a supporting hyperplane of P in R with H, n P = F, as desired. [
Corollary 7.6. Let P be a polytope in R®. Then the two lattices (¥(P), <) and

(8(P), <) are the same.

We shall finally introduce two particular classes of polytopes, the pyramids
and the bipyramids, and we shall describe their facial structure.
A pyramid in R? is a polytope—cf. Theorem 7.7(a)—of the form

P = conv(Q U {xo}),

where Q is a polytope in R?, called the basis of P, and x,, is a point of R\ aff Q,
called the apex of P. (Note that basis and apex need not be unique: a simplex
is a pyramid where any facet may be taken as the basis, or, equivalently,
any vertex may be taken as the apex.) A pyramid P is called an e-pyramid
| ,f: if dim P = e. Clearly, a pyramid P is an e-pyramid if and only if its basis Q
Figure 3 F is an (e — 1)-polytope.
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The facial structure of a pyramid is determined by the facial structure of

its basis as follows:

Theorem 7.7. Let P be a pyramid in R with basis Q and apex x,. Then the *'P

following holds:

(a) P is a polytope with ext P = (ext Q) U {x,}.

(b) A subset F of P with xo ¢ F is a face of P if and only if it is a face of Q.

(¢c) A subset F of P with xq € F is a face of P if and only if there is a face G
of Q such that F = conv(G U {x,}), i.e. F = {x,} or F is a pyramid with a
face G of Q as the basis and x, as the apex. For each such face F of P, the
face G is unique, and dim G = dim F — 1.

PROOF. (a) The set
P, == conv((ext Q) U {x,})

1S a convex set containing Q and x,, cf. Theorem 7.2(c). Therefore, it contains
P. On the other hand, 1t is clear that P, < P, whence

P = conv((ext Q) U {x,}).
This shows that P is a polytope and also implies that
ext P < (ext Q) u {x,},

ct. Theorem 7.2, (a) = (b). To prove the opposite inclusion, we first remark
that P 1s the union of all segments [y, x, ], where y € Q. It is then clear that if
H,1s a hyperplane with xo € Hyand H, n aff Q = ¢, then H is a supporting
hyperplane of P with Hy N P = {x,}, implying that x, € ext P. To prove also
that every x eext Q 1s in ext P, we prove more generally that every proper
face of Q 1s a face of P. Let F be a proper face of Q. Then there is a supporting
hyperplane H of Q m aff Q such that H n Q = F. Let H, be a hyperplane in
R*such that H; n aff Q = H and x,, is on the same side of H, as Q\ F. Then,
again using the remark above that each point of P belongs to some segment
Ly, xo] with ye Q, we see that H; n P = F, whence F is a face of P. This
completes the proof of (a). (A more direct way of showing that every (proper)
face of Q 1s a face of P goes via the observation that Q is a facet of P. Our
motivation for preferring the proof given above is the fact that after an

obvious modification it also applies to the situation needed in the proof of

Theorem 7.8 below.)

(b) During the proof of (a) it was proved that every proper face of Q is a
face of P. Since Q 1tself is also a face (in fact, a facet) of P, it follows that every
face of Q 1s a face of P.

Conversely, let F be a non-empty face of P not containing x,. By Theorem
1.5 there 1s a supporting hyperplane H of P such that H n P = F. Using
(a) and Theorem 7.3 we see that ext F < ext Q, whence F < Q. But then
trivially F 1s a face of Q.

-----
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(c) We first prove that every set F of the form
F = conv(G U {x4}),

where G is a face of Q, is a face of P. We need only consider the case where G
1S a proper face of Q. For any such face G there is a supportin g hyperplane H
of Q mn aff Q such that HN Q = G. Let H, be a hyperplane in R such that

= H,naft Q = H and x, € H,. Then clearly H, is a proper supporting hyper-

A .
L N -
¥.: B -
!f Rl

plane of P, whence

F1:= lﬂP

1s a proper (exposed) face of P. Moreover,

ext Fy = H  nextP
= (H next Q) U {x,}
= (eXt G) U {xO}&

where we have used Theorem 7.3 and (a). Then using Theorem 7.2(c) we get

F; = conv((ext G) U {x,})
= conv(G v {x,})
— F

whence F 1s a face of P, as desired.

To prove the converse, we need only consider the case where F {Xo}

and F # P. Let H be a supporting hyperplane of P such that F = H A P,
ct. Theorem 7.5. Since P is the union of all segments Ly, xo], where y € Q, we

see that F is the union of all segments [y, x,], where ye Hn Q. Letting
G:=H n Q, 1t follows that

F = conv(G U {x,}),

and it 18 clear that G is a face of Q.
Finally, the uniqueness of G and the dimension formula are obvious.

A bipyramid in R? is a polytope—cf. Theorem 7.8(a)—of the form
P = conv(Q U {xo, x,}),

where Q is a polytope in R’ with dim Q > 1, and x,, x, are two points of
R\ aff Q such that

Ixo, x:[ N1 Q # &

(Then actually Jx,, x,[ has precisely one point in common with ri Q.) The
set ) 1s called the basis of P, and x,, x, are called the apices of P. (As in the
case of pyramids, basis and apices are, in general, not unique.) A bipyramid
P 1s called an e-bipyramid if dim P = e. Clearly, a bipyramid P is an e-
bipyramid if and only if its basis Q is an (e — 1)-polytope.



50 2. Convex Polytopes

The facial structure of a bipyramid is determined by the facial structure
of its basis as follows:

Theorem 7.8. Let P be a bipyramid in R? with basis Q and apices x, and x;.
T hen the following holds:

(a) P isa polytope with ext P = (ext Q) L {xo, X;}.

(b) A subset F of P with x,, x, ¢ F is a face of P if and only if it is a face of )
with F # Q.

(c) A subset F of P with x, € F and x, ¢ F is a face of P if and only if there is a
face G of Q with G # Q such that F = conv(G U {x,}),i.e. F = {xo} or F
is a pyramid with a face G of Q with G # Q as the basis and x, as the
apex. For each such face F of P, the face G is unique, and dim G =
dim F — 1. Similarly for subsets F of P with x; € F and Xy ¢ F.

(d) A subset F of P with x,,x, € F is aface of P if and only if F = P.

Proof. The proof follows the same lines as the proof of Theorem 7.7. The
details are left to the reader. |

EXERCISES

7.1. Show that every polytope P with n vertices is the orthogonal projection of an
(n — 1)-simplex. (This is to be understood as follows: “Embed” P in R"" 1 con-
struct an (n — 1)-simplex in R*~! whose orthogonal projection onto aff P 1s P.)

72. Let 1 < n < d. Starting with a (d — n)-polytope Q in R?, we may successively build
up pyramids P,, P,, ..., P, by taking P, tobe a (d — n + 1)-pyramid with Q as a
basis, taking P, to be a (d — n + 2)-pyramid with P, as a basis, etc. The d-pyramid
P, is then called an n-fold d-pyramid with Q as a basis. Show that a (d — 1)-fold
d-pyramid is also a d-fold d-pyramid; it is, in fact, a d-simplex.

7.3. Copying Exercise 7.2, define the notion of a n-fold d-bipyramid. Show thata (d — 1)-
fold d-bipyramid is also a d-fold d-bipyramid.

(A particular type of d-fold d-bipyramids are the d-crosspolytopes; these are the

convex hulls of 2d points a,, ..., a,, by, ..., b, such that all segments [a;, b;] have

a common midpoint, and no [a;, b;] is contained in the affine hull of [ay, b,], ...,

[a,_., b,_.]. If the segments [q;, b;] are orthogonal and have the same length, then

the d-crosspolytope is said to be regular. A 3-crosspolytope 1s called an octahedron.)

7.4. A prism in R? is a polytope of the form

P = conv(Q U (a + Q)),

where Q is a polytope in R with dim Q < d, and a + @ & aff Q. Show that this
definition is equivalent to the following: A prism in R® is a polytope of the form

P =0 + |o,a],

where Q is a polytope in R* with dim Q < d and a is a point in R*\ {0} such that
the line through o and a is not parallel to aff Q.

Show that
ext P = ext Q v ext(a + Q).
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Show that the faces of P are the faces of Q, the faces of a + Q, and the prisms

| F = conv(G u (a + G)),
where G 1s a face of Q.

1.5. Copying Exercise 7.2, define the notion of an n-fold d-prism. Show that a (d — 1)-fold
d-prism is a d-fold d-prism.

(A d-fold d-prism is also called a d-parallellotope ; equivalently, a d-parallellotope
is a polytope of the form
a+[o,bi]+ -+ [o,b,],

where b; 1s not contained in the affine hull of a + [0, b;] + --- + [0, b,_,]. If the

segments [ o, b;] are orthogonal and have the same length, then the d-parallellotope
1s called a d-cube.)

§8. Polyhedral Sets

In previous sections we have proved that every compact convex set C has an
“external representation” as the intersection of closed halfspaces, namely, the
supporting halfspaces, and an “internal representation” as the convex hull
of a (unique) minimal set, namely, the set of extreme points. (Actually, for the
external representation compactness is not needed, closedness suffices.) The
sets which have a “finite” internal representation are the polytopes. In this
section we shall study the sets which have a “finite” external representation,
1.e. sets which are intersections of a finite number of closed halfspaces. These
sets are called polyhedral sets. The main basic fact in polytope theory is that
the polytopes are precisely the non-empty bounded polyhedral sets. Part of

this statement will be proved at the end of this section; the remaining part
will be proved in the next section.

A subset Q of R is called a polyhedral set if Q is the intersection of a
finite number of closed halfspaces or 0 = R°.

Every hyperplane H in R? is the intersection of the two closed halfspaces
which are bounded by H, and every affine subspace A of R¢ with 4 % R?is
the intersection of a finite number of hyperplanes. Therefore, every affine
subspace of R? is polyhedral.

Let Q be a polyhedral set in R?, and let 4 be an affine subspace of R
such that Q = A # R® Then Q is the intersection of a finite number of closed
halfspaces in A or Q = A. This follows from the fact that if K is a closed
halfspace in R? such that 4 N K # ¥, then A N K is a closed halfspace in A
or An K = A.

Conversely, let A be an affine subspace of R? with 4 # R?, and let Q be a
subset of A such that Q is the intersection of a finite number of closed half-
spaces In A or Q = A. Then Q is the intersection of a finite number of closed
halfspaces in R? and hence polyhedral. This follows from the fact that for
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every closed halfspace K in A there is a closed halfspace K’ in R such that PROOF. Forj = 1,...,n, we let

AN K = K.

Every polyhedral set is closed and convex. The intersection of a finite
number of polyhedral sets is again polyhedral. Any translate of a polyhedral
set is again polyhedral. The image of a polyhedral set under an affine mapping
is again polyhedral.

The facial structure of a (non-empty) polyhedral set Q in R is trivial when
QO is an affine subspace of R the only faces being ¥ and Q. When Q 1s an

Mj - — ﬂ K(xi, Oti).
=
Then Q = K(x;, ;) n M; for each j, and since dim Q = d by assumption,

we see that int M; # (¥; consequently, ri M; = int M, and M, ¢ H(x js 0).
The condition of the theorem reads

fz-dimensiOpal polyh?dral set in RY which is not‘ an afﬁqe sul?space, then Q H(x;, ;) nint M; # (7, j=1,...,n (2)
is affinely isomorphic to a polyhedral set Q' in R® with dim Q' = e and Bv Th . | |

Q' # Re. Therefore, when studying facial properties of polyhedral sets, it y Theorem 4.1 and the observations above, (2) is equivalent to

suffices to consider polyhedral sets Q in R? with dim Q = d and Q # R?, M; & K(x;, o), M; & K(—x;, —a;), j=1,...,n. (3)

Everv polvhedral set O in R? has a representation
Yy PO ¢ P Now, M; = K(—x;, —a;) would imply

a contradiction. Hence, (3) is equivalent to

Q= _OIK(xia o). (1)

In the following, when talking about a representation (1) of Q, we shall always

implicitly assume that no two K(x;, a;)’s are identical. For Q # R* we may M;# K(x;,a), j=1,...,n (4)
always assume that each K(x;, a,) is a closed halfspace, 1.e. each x;1s #o0. For B . . : . o

iy i ‘ ‘ t (4
O = R? there is only one representation, namely, Q = K(o, o), where o > 0. ut (4) s just a rephrasing of irreducibility. L]

Note that when Q # R? there are infinitely many representations (unless
d = 0); new closed halfspaces containing Q may always be added.
We shall call a representation (1) irreducible if n = 1,or n > 1 and

The following theorem shows that the boundary of a polyhedral set is
built up in the expected way:

- Theorem 8.2. Let Q be a polyhedral set in R? with di — d
Q%_QK(-"CH%), i=1,...,n d, poiynearati set in R withdim Q = d and Q # R Let

i % j ' Q = ﬂ K(x;, a;) (*)
A representation which is not irreducible is called reducible. Clearly, any [ | =1
reducible representation may be turned into an irreducible representation § be a representation of Q, where each K(x;, o) is a closed halfspace. Then the

by omitting certain of the sets K(x;, «;). It follows from Theorem 8.2 below following holds:
that there is only one irreducible representation of each polyhedral set Q E  (a) bd Q = )1y H(x;, a) N Q.
which is not an affine subspace. L (b) Each facet of Q is of the form H(x;, a)) N Q.

. (c) Eachset H(x;,a;) N Qis afacet of O if and only if the tati '
Theorem 8.1. Let Q be a polyhedral set in R* withdim Q =d and Q # R*. § irreducible. o ) ey  f the representation (+) is
Let

PROOF. (a) We have

= K(x;, ; _ _ n
Q iol (X3, o) int @ = int () K(x;, o)
i=1
be a representation of Q with n > 1, where each K(x;, o;) is a closed halfspace.
Then the representation is irreducible if and only if

()int K(x;, ;)
i=1

H(x;, a;) nint () K(x;, @) # &
i=1
'y

ﬁ K(xi, GC,')\H(xis ai)
i=1

foreachj=1,...,n. which implies (a).
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(b) Let F be a facet of Q. Let x be a relative interior point of F. ‘Tl:len F
is the smallest face of Q containing x, cf. Theorem 5.6. By (a), there is j such

that
er(x_,-, o:j) () Q

But then we must have

F < H(x;, a;) N Q,
implying
F = H(xja aj) A Qa

cf. Corollary 35.5.
(c) For n = 1 there is nothing to prove. So assume that n > 1.

If (%) is irreducible, then each H(x;, a;) supports Q, whence H(x;, &;) N Q
is a proper face of Q. We prove that H(x;, «;) N Q has a non-empty interior
in H(x,, a;); this will imply that H(x;, «;) n Q 1s a facet. We have

J? 7J

H(x;, ;) N Q = H(x;, a;) N DIK(xi, o;)

= H(xj, aj) () m K(xis ai)
%
- H(Xj, aj) M lnt ﬂ K(xi, Oti)
%)
#* J,

cf. Theorem 8.1. Since the set

n
H(x;, a;) nint () K(x;, %;)
v
!

is open in H(x;, «;), the desired conclusion follows.

Conversely, if (x) is reducible, then

Q - m K(xis ai)
i=1

]

for some j. Suppose that H(x;, a;) n Q is a facet of Q. LeF X be‘ a_relgtive'
interior point of H(x;, &;) N Q. Using (a) we see that there 1s an i with i # j

J
and x € H(x;, o;) n Q. But then we must have

H(x;,a)nQ = H(x;, o) 0 Q,
cf. Corollary 5.5. This, however, implies
K(xja aj) = K(x;, &),

a contradiction. Hence, H(x;, a;) N Q is not a facet of Q. []
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The preceding theorem shows that most polyhedral sets have facets, the
only exceptions being affine subspaces.

Theorem 8.3. Let F be a proper face of a polyhedral set Q in R°. Then there is a
facet G of Q containing F.

PROOF. We may assume that dim Q = d. Choose an irreducible representa-
tion

Q = .OIK(xia cti)*"

Let x be a relative interior point of F. By Theorem 8.2(a), there is j such that
x € H(x;, a;) N Q.

Now, F 1s the smallest face containing x, cf. Theorem 5.6, and H(x %) N Q
1s a facet containing x, cf. Theorem 8.2(c). Therefore, with

G:=H(x;,a;)nQ

J?

we have the desired conclusion.

Corollary 8.4. Let Q be a polyhedral set in R®. Then every face of Q is also a
polyhedral set.

PROOF. We need only prove the statement for proper faces of Q. Theorem 8.3
shows that any proper face of Q is a face of a facet of Q. Facets of Q, however,

are polyhedral sets by Theorem 8.2(b). The statement then follows by induc-
tion on the dimension. []

Corollary 8.5. Let Q be a polyhedral set in R. Then the number of faces of Q
is finite.

PrROOF. The number of facets of a polyhedral set Q is finite, cf. Theorem 8.2(b).

Each proper face of Q is a face of a facet of Q by Theorem 8.3. The statement
then follows by induction on the dimension. L

Corollary 8.6. Let Q be a polyhedral set in R* with dim Q = d. Let F jand F

be faces of Q with
F, < F,
and
dim F; = j, dim F, = k,
where

O<j<j+l<k-1<k<d
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Then there are faces F;,, ..., Fi_, of Q with

FJ'CFJ""IC”'CFk—lCFk
and

dim F; = i, i=j+1,...,k— 1.

PrOOF. By Theorem 5.2, F; 1s a proper face of F,. And by Corollary 8.4, F,
is polyhedral. Theorem 8.3 then ensures the existence of a facet F,_; of F,
with F; = F,_,. If j = k — 2, we have the desired conclusion. If j < k — 2,
we argue as above with F, _, replacing F,. Continuing this way, we obtain
faces F, with the desired properties. [

In Corollary 8.6, note that we actually have

FicFju1 & & Fe-1 &1y

Note also that the statement is not valid in general with j = —1.
We conclude this section with the following:

Corollary 8.7. Let Q be a non-empty bounded polyhedral set in R®. Then Q is a
polytope.

PrROOF. By assumption, Q is a compact convex set. By Corollary 8.5, ext Q
is a finite set. The statement then follows from Theorem 7.1, (b) = (a). [

The converse of Corollary 8.7 is also valid, see Section 9.

EXERCISES

8.1. Show that the image of a polyhedral set under an affine mapping 1s again a poly-
hedral set.

8.2. Show that every face of a non-empty polyhedral set i1s exposed.

8.3. Show that every non-empty polyhedral set not containing any line has at least one
vertex. (Here, of course, a vertex of a polyhedral set means a 0-dimensional face,
exposed by Exercise 8.2.)

§9. Polarity of Polytopes and Polyhedral Sets

In this section we shall apply the polarity theory of Section 6 to polytopes and
polyhedral sets. We shall show that the polar of a polytope with o as an
interior point is a bounded polyhedral set with o as an interior point, and
conversely. As promised in Section 8, we shall deduce that every polytope 1s
a bounded polyhedral set (whence polytopes can also be described as non-
empty bounded polyhedral sets). Furthermore, we shall improve a result
of Section 6 by showing that dim F + dim G = d — 1 when F and G are
conjugate faces of mutually polar d-polytopes.

QY. FOIATILY O FOIYLOPES dllU rotyficdldl deiy By,

The tollowing theorem explains in detail the polarity of convex polytopes

and polyhedral sets. Note that the polyhedral sets Q having a representation
of the particular form

Q = m K(xia 1)
i=1
are precisely the polyhedral sets which have o as an interior point.

Theorem 9.1. Let x4, ..., x,, where n > 1, be distinct points of R%, and let

P := COHV{xl, S xn}a

Q:= 61 K(x;, 1).

Then we have:

(a) P° = Q.

(b) Q° = conv{o, x,..., X,}.

(¢) P and Q are mutually polar sets if and only if 0 € P.

(d) P and Q are mutually polar sets with Q bounded if and only if 0 € int P.

(¢) Suppose that P and Q are mutually polar sets with Q bounded (i.e. o € int P,
cf. (d)). Then we have

ext P = {x,,..., x,}

if and only if the representation

0 = 6 K(x;, 1)
is irreducible. -
PROOF. (a) Formula (1) of Section 6 shows that
X150 X, = 0, (1)
and formula (2) of Section 6 shows that
{X1, ..., X307 = (conv{x,, ..., x,})° (2)

smce M < K(y, 1) if and only if conv M < K(y, 1). Combining (1) and (2)
we obtain (a).

(b) Using (a), Theorem 6.2 and Corollary 2.9 we have

QO — POD
= clconv{o, x4, ..., x,}
= CONV{0, Xy, ..., X,

which proves (b).

(c) This 1s an immediate consequence of (a) and (b).
(d) Thais follows from (c¢) and Theorem 6.1.
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(e) By assumption we must haven > 2. Forj=1,...,n,let

PJ = ConV{xl, veey Xjm1 Xj+1, c ey x"},

Qf = 'Ol K(xis 1)

i # j
Note that application of (a) to {xi, ..., X;—1, Xj+1, .-, X, 1nStead of
{X1y..., Xn} SIVES
P ? = Qj- (3)
Furthermore, Theorem 7.2, (a) = (b) shows that we always have
ext P < {x4,...,X,}. (4)

Now, if ext P is a proper subset of {x,, ..., x,}, then P = P, for some j by
Theorem 7.2(c). Then also P° = P$, whence P° = Q; by (3). But P° = ()
by (a), and therefore we have Q = Q;. This shows that the representation of

Q is reducible.
Conversely, if the representation of Q is reducible, then Q@ = Q; for some j,

and so also Q° = Q5. Application of (b) to {Xx;,...,X;_ 1, Xju1s---s Xa}
instead of {x,,..., x,} g1ves
QF = cONV{0, X1, ..., Xj_ 1, Xji15--+5 Xnf-

Since Q° = P by assumption, and Q° = Q$, as we just have seen, 1t follows
that

P =conv{o, X, ...sXj—1s Xjt1s -+ Xn)-

Now, Theorem 7.2, (a) <> (b) shows that here any non-extreme point of P
among the points o, Xy, ..., X;—1, Xj+1, - - - » X, May be omitted. It follows
from (4) and the assumption that o is such a point. Therefore,

P=conv{Xy,...,X;—1, Xji415-++> Xn)-
Theorem 7.2, (a) = (b) then shows that

eXtP - {xl,...,xj—la xj+13'-'9xn}9

whence ext P is a proper subset of {x,, ..., x,}.

We are now ready to prove the following main theorem:

Theorem 9.2. A non-empty subset P of R? is a polytope if and only if it is a
bounded polyhedral set.

PrROOF. We have already proved the “if ” statement in Corollary 8.7. Con-
versely, let P be a polytope in R’ say

P = conv{xy, ..., X,}-

To prove that P 1s a bounded polyhedral set it causes no loss of generality
to assume that oeint P. Theorem 9.1(a) shows that P° = Q, where Q
denotes the polyhedral set defined by

Q = _OIK(xia 1)

It follows from Theorem 9.1(d) that Q is bounded and that Q° = P. Applying
now Corollary 8.7 to Q, it follows that Q 1s a polytope, say

O =conv{ys, ..., V)
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